Advertisement

A Geometric Determination of the Distance to SN 1987A and the LMC

  • Nino Panagia
Part of the Springer Proceedings in Physics book series (SPPHY, volume 99)

Summary

Using the definitive reductions of the IUE light curves by [15] and an extensive set of HST images of SN 1987A we have repeated and improved our original analysis [8, 9] to derive a better determination of the distance to the supernova. In this way we have obtained an absolute size of the ring R abs = (6.23 ± 0.08) × 1017 cm and an angular size R″ = 808 ± 17 mas, which give a distance to the supernova d(SN1987A) = 51.4 ± 1.2 kpc and a distance modulus (m − M)SN1987A = 18.55 ± 0.05. Allowing for a displacement of SN 1987A position relative to the LMC center, the distance to the barycenter of the Large Magellanic Cloud is also estimated to be d(LMC) = 51.7 ± 1.3 kpc, which corresponds to a distance modulus of (m − M)LMC = 18.56 ± 0.05.

Keywords

Light Curve Light Curf Angular Size Absolute Size Distance Modulus 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    E. Dwek, J.E. Felten: Astrophys. J. 387, 551 (1992)CrossRefADSGoogle Scholar
  2. 2.
    A. Gould: Astrophys. J. 452, 189 (1995)CrossRefADSGoogle Scholar
  3. 3.
    A. Gould, O. Uza: Astrophys. J. 494, 118 (1998)CrossRefADSGoogle Scholar
  4. 4.
    M. Hamuy, M.M. Phillips, N.B. Suntzeff, R.A. Schommer, J. Maza, R. Aviles: Astron. J. 112, 2391 (1996)CrossRefADSGoogle Scholar
  5. 5.
    P. Jakobsen et al.: Astrophys. J. Lett. 369, L63 (1991)CrossRefADSGoogle Scholar
  6. 6.
    M. Livio, M. Donahue, N. Panagia: In: “The Extragalactic Distance Scale,” eds. M. Livio, M. Donahue, N. Panagia (Cambridge Univ. Press: Cambridge, 1997)Google Scholar
  7. 7.
    B. Madore, W. Freedman: Pub. Astron. Soc. Pacific 103, 933 (1991)CrossRefADSGoogle Scholar
  8. 8.
    N. Panagia, R. Gilmozzi, F. Macchetto, H.-M. Adorf, R.P. Kirshner: Astrophys. J. 380, L23 (1991)CrossRefADSGoogle Scholar
  9. 9.
    N. Panagia, R. Gilmozzi, F. Macchetto, H.-M. Adorf, R.P. Kirshner: Astrophys. J. Lett. 386, L31 (1992)CrossRefADSGoogle Scholar
  10. 10.
    N. Panagia, R. Gilmozzi, R.P. Kirshner, C.S.J. Pun, G. Sonneborn: in preparationGoogle Scholar
  11. 11.
    P.C. Plait, P. Lundqvist, R.A. Chevalier, R.P. Kirshner: Astrophys. J. 439, 730 (1995)CrossRefADSGoogle Scholar
  12. 12.
    A.G Riess, W.H. Press, R. P. Kirshner: Astrophys. J. 473, 588 (1996)CrossRefADSGoogle Scholar
  13. 13.
    M. Romaniello, M. Salaris, S. Cassisi, N. Panagia: Astrophys. J. 530, 738 (2000)CrossRefADSGoogle Scholar
  14. 14.
    A. Saha, A. Sandage, G.A. Tammann, A.E. Dolphin, J. Christensen, N. Panagia, F.D. Macchetto: Astrophys. J. 562, 314 (2001)CrossRefADSGoogle Scholar
  15. 15.
    G. Sonneborn et al.: Astrophys. J. 477, 848 (1997)CrossRefADSGoogle Scholar
  16. 16.
    G. Sonneborn et al.: Astrophys. J. Lett. 492, L139 (1998)CrossRefADSGoogle Scholar
  17. 17.
    R. van der Marel, M.-R.L Cioni: Astron. J. 122, 1807 (2001)CrossRefADSGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Nino Panagia
    • 1
    • 2
  1. 1.Space Telescope Science InstituteBaltimoreUSA
  2. 2.Affiliated with the Space Telescope Division of the European Space AgencyESTECNoordwijkNetherlands

Personalised recommendations