Advertisement

On the Stability of Thermonuclear Burning Fronts in Type Ia Supernovae

  • F.K. Röpke
  • W. Hillebrandt
Conference paper
Part of the Springer Proceedings in Physics book series (SPPHY, volume 99)

Summary

The propagation of cellularly stabilized thermonuclear flames is investigated by means of numerical simulations. In Type Ia supernova explosions the corresponding burning regime establishes at scales below the Gibson length. The cellular flame stabilization — which is a result of an interplay between the Landau-Darrieus instability and a nonlinear stabilization mechanism — is studied for the case of propagation into quiescent fuel as well as interaction with vortical fuel flows. Our simulations indicate that in thermonuclear supernova explosions stable cellular flames develop around the Gibson scale and that a deflagration-to-detonation transition is unlikely to be triggered from flame evolution effects here.

Keywords

White Dwarf Flame Propagation Turbulent Velocity Supernova Explosion Burning Regime 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S.I. Blinnikov, P.V. Sasorov: Phys. Rev. E 53, 4827 (1996)CrossRefADSGoogle Scholar
  2. 2.
    G. Darrieus: In: “Propagation d#x2019;un front de flame.” Presented at: La Technique Moderne, unpublished (1938)Google Scholar
  3. 3.
    V.N. Gamezo, A.M. Khokhlov, E.S. Oran, A.Y. Chtchelkanova, R.O. Rosenberg: Science 299, 77 (2003)CrossRefADSGoogle Scholar
  4. 4.
    S. Gutman, G.I. Sivashinsky: Physica D 43, 129 (1990)CrossRefADSMATHGoogle Scholar
  5. 5.
    B.T. Helenbrook, C.K. Law: Combustion and Flame 117, 155 (1999)CrossRefGoogle Scholar
  6. 6.
    W. Hillebrandt, J.C. Niemeyer: Ann. Rev. Astron. Astrophys. 38, 191 (2000)CrossRefADSGoogle Scholar
  7. 7.
    F. Hoyle, W.A. Fowler: Astrophys. J. 132, 565 (1960)CrossRefADSGoogle Scholar
  8. 8.
    A.R. Kerstein: Combust. Sci. Technol. 118, 189 (1996)CrossRefGoogle Scholar
  9. 9.
    L.D. Landau: Acta Physicochim URSS 19, 77 (1944)Google Scholar
  10. 10.
    J.C. Niemeyer, W. Hillebrandt: Astrophys. J. 452, 779 (1995)CrossRefADSGoogle Scholar
  11. 11.
    J.C. Niemeyer, S.E. Woosley: Astrophys. J. 475, 740 (1997)CrossRefADSGoogle Scholar
  12. 12.
    M. Reinecke, W. Hillebrandt, J.C. Niemeyer: Astron. Astrophys. 391, 1167 (2002)CrossRefADSGoogle Scholar
  13. 13.
    F.K. Röpke, J.C. Niemeyer, W. Hillebrandt: Astrophys. J. 588, 952 (2003)CrossRefADSGoogle Scholar
  14. 14.
    F.K. Röpke, W. Hillebrandt, J.C. Niemeyer: In: “The Cellular Burning Regime in Type Ia Supernova explosions: I. Flame Propagation into Quiescent Fuel.” Astron. Astrophys., inpress (2004)Google Scholar
  15. 15.
    F.K. Röpke, W. Hillebrandt, J.C. Niemeyer: In: “The Cellular Burning Regime in Type Ia Supernova explosions: II. Flame Propagation into Vortical Fuel.” Astron. Astrophys., inpress (2004)Google Scholar
  16. 16.
    F.K. Röpke: In: “On the Stability of Thermonuclear Flames in Type Ia Supernova Explosions.” Ph.D. Thesis (Technical University of Munich: 2003)Google Scholar
  17. 17.
    Ya.B. Zel#x2019;dovich: J. Appl. Mech. and Tech. Phys. 1, 68 (1966)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • F.K. Röpke
    • 1
  • W. Hillebrandt
    • 1
  1. 1.Max-Planck-Institut für AstrophysikGarchingGermany

Personalised recommendations