Advertisement

Weak Interaction Processes in Core-Collapse Supernovae

  • G. Martínez-Pinedo
  • K. Langanke
  • J.M. Sampaio
  • D.J. Dean
  • W.R. Hix
  • O.E.B. Messer
  • A. Mezzacappa
  • M. Liebendorfer
  • H.-Th. Janka
  • M. Rampp
Conference paper
Part of the Springer Proceedings in Physics book series (SPPHY, volume 99)

Summary

Supernova simulations to date have assumed that during core collapse electron captures (EC) occur dominantly on free protons, while captures on heavy nuclei are Pauli-blocked and are ignored. Using microscopic calculations we show that the EC rates on heavy nuclei are large enough that, in contrast to previous assumptions, electron capture on nuclei dominates over capture on free protons. This leads to significant changes in core collapse simulations.

Keywords

Electron Capture Heavy Nucleus Free Proton Core Collapse Electron Chemical Potential 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    E. Bravo, D. García-Senz: Mon. Not. R. Astron. Soc. 307, 984 (1999)CrossRefADSGoogle Scholar
  2. 2.
    S.W. Bruenn: Astrophys. J. Suppl. 58, 771 (1985)CrossRefADSGoogle Scholar
  3. 3.
    J. Cooperstein, J. Wambach: Nuc. Phys. 420, 591 (1984)CrossRefADSGoogle Scholar
  4. 4.
    G.M. Fuller, W.A. Fowler, M.J. Newman: Astrophys. J. Suppl. 42, 447 (1980)CrossRefADSGoogle Scholar
  5. 5.
    G.M. Fuller, W.A. Fowler, M.J. Newman: Astrophys. J. Suppl. 48, 279 (1982)CrossRefADSGoogle Scholar
  6. 6.
    G.M. Fuller, W.A. Fowler, M.J. Newman: Astrophys. J. 252, 715 (1982)CrossRefADSGoogle Scholar
  7. 7.
    G.M. Fuller: Astrophys. J. 252, 741 (1982)CrossRefADSGoogle Scholar
  8. 8.
    G.M. Fuller, W.A. Fowler, M.J. Newman: Astrophys. J. 293, 1 (1985)CrossRefADSGoogle Scholar
  9. 9.
    A. Heger, K. Langanke, G. Martínez-Pinedo, S.E. Woosley: Phys. Rev. Lett. 86, 1678 (2001)CrossRefADSGoogle Scholar
  10. 10.
    A. Heger, K. Langanke, G. Martínez-Pinedo, S.E. Woosley: Astrophys. J. 560, 307 (2001)CrossRefADSGoogle Scholar
  11. 11.
    W.R. Hix: Ph.D. Thesis (Harvard Univ.: 1995)Google Scholar
  12. 12.
    S.E. Koonin, D.J. Dean, K. Langanke: Phys. Rep. 278, 2 (1997)CrossRefADSGoogle Scholar
  13. 13.
    K. Langanke, G. Martínez-Pinedo: Nuc. Phys. 673, 481 (2000)CrossRefADSGoogle Scholar
  14. 14.
    K. Langanke, G. Martínez-Pinedo: At. Data. Nucl. Data Tables 79, 1 (2001)CrossRefADSGoogle Scholar
  15. 15.
    K. Langanke, E. Kolbe, D.J. Dean: Phys. Rev. C 63, 032801 (2001)CrossRefADSGoogle Scholar
  16. 16.
    K. Langanke etal.: Phys. Rev. Lett. 90, 241102 (2003)CrossRefADSGoogle Scholar
  17. 17.
    G. Martínez-Pinedo, K. Langanke, H.-T. Janka, M. Rampp: in preparationGoogle Scholar
  18. 18.
    A. Mezzacappa etal.: Phys. Rev. Lett. 86, 1935 (2001)CrossRefADSGoogle Scholar
  19. 19.
    M. Rampp, H.-T. Janka: Astron. Astrophys. 396, 361 (2002)CrossRefADSGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • G. Martínez-Pinedo
    • 1
    • 2
  • K. Langanke
    • 3
  • J.M. Sampaio
    • 3
  • D.J. Dean
    • 4
  • W.R. Hix
    • 4
    • 5
    • 6
  • O.E.B. Messer
    • 4
    • 5
    • 6
  • A. Mezzacappa
    • 4
  • M. Liebendorfer
    • 7
    • 4
    • 5
  • H.-Th. Janka
    • 8
  • M. Rampp
    • 8
  1. 1.Institut d#x2019;Estudis Espacials de CatalunyaBarcelonaSpain
  2. 2.Institució Catalana de Recerca i Estudis AvançatsBarcelonaSpain
  3. 3.Institute for Physics and AstronomyUniversity of ÅrhusDenmark
  4. 4.Physics DivisionOak Ridge National LaboratoryUSA
  5. 5.Department of Physics and AstronomyUniversity of TennesseeUSA
  6. 6.Joint Institute for Heavy Ion researchOak RidgeUSA
  7. 7.Canadian Institute for Theoretical AstrophysicsTorontoCanada
  8. 8.Max-Planck-Institut fur AstrophysikGarchingGermany

Personalised recommendations