Skip to main content

Target Volumes in Non-Small Cell Lung Cancer

  • Chapter
  • 874 Accesses

Part of the Medical Radiology Radiation Oncology book series (Med Radiol Radiat Oncol)

Keywords

  • Target Volume
  • Radiat Oncol Biol Phys
  • Clinical Target Volume
  • Gross Tumor Volume
  • Internal Target Volume

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/3-540-26632-1_8
  • Chapter length: 14 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   259.00
Price excludes VAT (USA)
  • ISBN: 978-3-540-26632-7
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   329.00
Price excludes VAT (USA)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Arita T, Matsumoto T, Kuramitsu T et al (1996) Is it possible to differentiate malignant mediastinal nodes from benign nodes by size? Reevaluation by CT, transesophageal echocardiography, and nodal specimen. Chest 110:1004–1008

    PubMed  Google Scholar 

  • Arriagada R, Le Pechoux C, Pignon JP (2003) Resected non-small cell lung cancer: need for adjuvant lymph node treatment? From hope to reality. Lung Cancer 42[Suppl 1]:57–64

    CrossRef  Google Scholar 

  • Aruga T, Itami J, Aruga M et al (2000) Target volume definition for upper abdominal irradiation using CT scans obtained during inhale and exhale phases. Int J Radiat Oncol Biol Phys 48:465–469

    CrossRef  PubMed  Google Scholar 

  • Bakheet SM, Saleem M, Powe J et al (2000) F-18 fluorodeoxy-glucose chest uptake in lung inflammation and infection. Clin Nucl Med 25:273–278

    CrossRef  PubMed  Google Scholar 

  • Barnes EA, Murray BR, Robinson DM et al (2001) Dosimetric evaluation of lung tumor immobilization using breath hold at deep inspiration. Int J Radiat Oncol Biol Phys 50:1091–1098

    CrossRef  PubMed  Google Scholar 

  • Belderbos JS, de Jaeger K, Heemsbergen WD et al (2003) First results of a phase I/II dose escalation trial in non-small cell lung cancer using three-dimensional conformal radiotherapy. Radiother Oncol 66:119–126

    CrossRef  PubMed  Google Scholar 

  • Beyer T, Antoch G, Blodgett T et al (2003) Dual-modality PET/CT imaging: the effect of respiratory motion on combined image quality in clinical oncology. Eur J Nucl Med Mol Imaging 30:588–596

    PubMed  Google Scholar 

  • Booth JT, Zavgorodni SF (2001) Modelling the dosimetric consequences of organ motion at CT imaging on radiotherapy treatment planning. Phys Med Biol 46:1369–1377

    CrossRef  PubMed  Google Scholar 

  • Caldwell CB, Mah K, Ung YC et al (2001) Observer variation in contouring gross tumor volume in patients with poorly defined non-small-cell lung tumors on CT: the impact of 18FDG-hybrid PET fusion. Int J Radiat Oncol Biol Phys 51:923–931

    CrossRef  PubMed  Google Scholar 

  • Cascade PN, Gross BH, Kazbraoni EA et al (1998) Variability in the detection of enlarged mediastinal lymph nodes in staging lung cancer: a comparison of contrast-enhanced and unenhanced CT. Am J Radiology 170:927–931

    Google Scholar 

  • Chen QS, Weinhous MS, Deibel FC et al (2001) Fluoroscopic study of tumor motion due to breathing: facilitating precise radiation therapy for lung cancer patients. Med Phys 28:1850–1856

    CrossRef  PubMed  Google Scholar 

  • Chen ZL, Perez S, Holmes EC et al (1993) Frequency and distribution of occult micrometastases in lymph nodes of patients with non-small-cell lung carcinoma. J Natl Cancer Inst 85:493–498

    PubMed  Google Scholar 

  • Cheung PC, Sixel KE, Tirona R et al (2003) Reproducibility of lung tumor position and reduction of lung mass within the planning target volume using active breathing control (ABC). Int J Radiat Oncol Biol Phys 57:1437–1442

    CrossRef  PubMed  Google Scholar 

  • Coughlin M, Deslauriers J, Beaulieu M et al (1985) Role of mediastinoscopy in pretreatment staging of patients with primary lung cancer. Ann Thorac Surg 40:556–560

    PubMed  Google Scholar 

  • Craig T, Battista J, Moiseenko V et al (2001) Considerations for the implementation of target volume protocols in radiation therapy. Int J Radiat Oncol Biol Phys 49:241–250

    PubMed  Google Scholar 

  • Curran WJ, Scott CB, Langer CJ et al (2003) Long-term benefit is observed in a phase III comparison of sequential vs concurrent chemo-radiation for patients with unresected stage III NSCLC: RTOG 9410. Proc Am Soc Clin Oncol 22:621

    Google Scholar 

  • Dautzenberg B, Arriagada R, Chammard AB et al (1999) A controlled study of postoperative radiotherapy for patients with completely resected nonsmall cell lung carcinoma. Cancer 86:265–273

    CrossRef  PubMed  Google Scholar 

  • De Leyn P, Vansteenkiste J, Cuypers P et al (1997) Role of cervical mediastinoscopy in staging of non-small cell lung cancer without enlarged mediastinal lymph nodes on CT scan. Eur J Cardiothorac Surg 12:706–712

    CrossRef  PubMed  Google Scholar 

  • DiBiase SJ, Werner-Wasik M, Croce R et al (2000) Standard off-cord lung oblique fields do not include the entire mediastinum: a computed tomography simulator study. Am J Clin Oncol 23:249–252

    PubMed  Google Scholar 

  • Dwamena BA, Sonnad SS, Angobaldo JO et al (1999) Metastases from non-small cell lung cancer: mediastinal staging in the 1990s — meta-analytic comparison of PET and CT. Radiology 213:530–536

    Google Scholar 

  • Emami B, Mirkovic N, Scott C et al (2003) The impact of regional nodal radiotherapy (dose/volume) on regional progression and survival in unresectable non-small cell lung cancer: an analysis of RTOG data. Lung Cancer 41:207–214

    CrossRef  PubMed  Google Scholar 

  • Ford EC, Mageras GS, Yorke E et al (2002) Evaluation of respiratory movement during gated radiotherapy using film and electronic portal imaging. Int J Radiat Oncol Biol Phys 52:522–531

    CrossRef  PubMed  Google Scholar 

  • Ford EC, Mageras GS, Yorke E et al (2003) Respiration-correlated spiral CT: a method of measuring respiratory-induced anatomic motion for radiation treatment planning. Med Phys 30:88–97

    PubMed  Google Scholar 

  • Furuse K, Fukuoka M, Kawahara M et al (1999) Phase III study of concurrent versus sequential thoracic radiotherapy in combination with mitomycin, vindesine, and cisplatin in unresectable stage III non-small cell lung cancer. J Clin Oncol 17:2692–2699

    PubMed  Google Scholar 

  • Giraud P (2000) Influence of CT images visualization parameters for target volume delineation in lung cancer. Radiother Oncol 56[Suppl 1]:39

    Google Scholar 

  • Giraud P, Antoine M, Larrouy A et al (2000) Evaluation of microscopic tumor extension in non-small-cell lung cancer for three-dimensional conformal radiotherapy planning. Int J Radiat Oncol Biol Phys 48:1015–1024

    CrossRef  PubMed  Google Scholar 

  • Glazer GM, Gross BH, Quint LE et al (1985) Normal mediastinal lymph nodes: number and size according to American Thoracic Society mapping. Am J Roentgenol 144:261–265

    Google Scholar 

  • Goerres GW, Burger C, Kamel E et al (2003) Respiration-induced attenuation artifact at PET/CT: technical considerations. Radiology 226:906–910

    PubMed  Google Scholar 

  • Graham MV, Purdy JA, Emami B et al (1999) Clinical dose-volume histogram analysis for pneumonitis after 3D treatment for non-small cell lung cancer (NSCLC). Int J Radiat Oncol Biol Phys 45:323–329

    Google Scholar 

  • Grills IS, Yan D, Martinez AA et al (2003) Potential for reduced toxicity and dose escalation in the treatment of inoperable non-small-cell lung cancer: a comparison of intensity-modulated radiation therapy (IMRT), 3D conformal radiation, and elective nodal irradiation. Int J Radiat Oncol Biol Phys 57:875–890

    CrossRef  PubMed  Google Scholar 

  • Gupta NC, Graeber GM, Bishop HA (2000) Comparative efficacy of positron emission tomography with fluorodeoxy-glucose in evaluation of small (<1 cm), intermediate (1 to 3 cm), and large (>3 cm) lymph node lesions. Chest 117:773–778

    CrossRef  PubMed  Google Scholar 

  • Gupta NC, Tamim WJ, Graeber GG et al (2001) Mediastinal lymph node sampling following positron emission tomography with fluorodeoxyglucose imaging in lung cancer staging. Chest 120:521–527

    CrossRef  PubMed  Google Scholar 

  • Halperin R, Pobinson D, Murray B et al (2002) Fluoroscopy for assessment of physiologic movement of lung tumors, a pitfall of clinical practice? Radioth Oncol 65:1

    CrossRef  Google Scholar 

  • Hara R, Itami J, Kondo T et al (2002) Stereotactic single high dose irradiation of lung tumors under respiratory gating. Radiother Oncol 63:159–163

    CrossRef  PubMed  Google Scholar 

  • Harada T, Shirato H, Ogura S et al (2002) Real-time tumor-tracking radiation therapy for lung carcinoma by the aid of insertion of a gold marker using bronchofiberscopy. Cancer 95:1720–1727

    CrossRef  PubMed  Google Scholar 

  • Harris KM, Adams H, Lloyd DC et al (1993) The effect on apparent size of simulated pulmonary nodules of using three standard CT window settings. Clin Radiol 47:241–244

    PubMed  Google Scholar 

  • Hayman JA, Martel MK, Ten Haken RK et al (2001) Dose escalation in non-small-cell lung cancer using three-dimensional conformal radiation therapy: update of a phase I trial. J Clin Oncol 19:127–136

    PubMed  Google Scholar 

  • Hirota S, Tsujino K, Endo M et al (2001) Dosimetric predictors of radiation esophagitis in patients treated for non-small-cell lung cancer with carboplatin/paclitaxel/radiotherapy. Int J Radiat Oncol Biol Phys 51:291–295

    CrossRef  PubMed  Google Scholar 

  • Hujala KT, Sipila JI, Grenman R (2001) Mediastinoscopy-its role and value today in the differential diagnosis of mediastinal pathology. Acta Oncol 40:79–82

    CrossRef  PubMed  Google Scholar 

  • International Commission on Radiation Units and Measurements (1993) ICRU report 50: prescribing, recording, and reporting photon beam therapy. Bethesda, MD

    Google Scholar 

  • International Commission on Radiation Units and Measurements (1999) ICRU report 62: prescribing, recording and reporting photon beam therapy (supplement to ICRU report 50). Bethesda, MD

    Google Scholar 

  • Jenkins P, D'Amico K, Benstead K et al (2003) Radiation pneumonitis following treatment of non-small-cell lung cancer with continuous hyperfractionated accelerated radiotherapy (CHART). Int J Radiat Oncol Biol Phys 56:360–366

    CrossRef  PubMed  Google Scholar 

  • Kara M, Sak SD, Orhan D et al (2000) Changing patterns of lung cancer; (3/4 in.) 1.9 cm; still a safe length for bronchial resection margin? Lung Cancer 30:161–168

    CrossRef  PubMed  Google Scholar 

  • Keall PJ, Joshi S, Tracton G et al (2003) 4-Dimensional radiotherapy planning. Int J Radiat Oncol Biol Phys 57[Suppl 2]:233

    CrossRef  Google Scholar 

  • Keller SM (2002) Complete mediastinal lymph node dissection — does it make a difference? Lung Cancer 36:7–8

    CrossRef  PubMed  Google Scholar 

  • Keller SM, Adak S, Wagner H et al (2000) A randomized trial of postoperative adjuvant therapy in patients with completely resected stage II or IIIA non-small-cell lung cancer. N Engl J Med 343:1217–1222

    CrossRef  PubMed  Google Scholar 

  • Kiricuta IC (2001) Selection and delineation of lymph node target volume for lung cancer conformal radiotherapy. Proposal for standardizing terminology based on surgical experience. Strahlenther Onkol 177:410–423

    PubMed  Google Scholar 

  • Kiyono K, Sone S, Sakai F et al (1988) The number and size of normal mediastinal lymph nodes: a postmortem study. AJR 150:771–776

    PubMed  Google Scholar 

  • Krol AD, Aussems P, Noordijk EM et al (1996) Local irradiation alone for peripheral stage I lung cancer: could we omit the elective regional nodal irradiation? Int J Radiat Oncol Biol Phys 34:297–302

    CrossRef  PubMed  Google Scholar 

  • Lagerwaard FJ, van Sornsen de Koste JR, Nijssen-Visser MR et al (2001) Multiple “slow” CT scans for incorporating lung tumor mobility in radiotherapy planning. Int J Radiat Oncol Biol Phys 51:932–937

    CrossRef  PubMed  Google Scholar 

  • Lagerwaard FJ, van de Vaart PJ, Voet PW et al (2002a) Can errors in reconstructing pre-chemotherapy target volumes contribute to the inferiority of sequential chemoradiation in stage III non-small cell lung cancer (NSCLC)? Lung Cancer 38:297–301

    CrossRef  PubMed  Google Scholar 

  • Lagerwaard FJ, Senan S, van Meerbeeck JP et al (2002b) Has 3-D conformal radiotherapy (3D CRT) improved the local tumor control for stage I non-small cell lung cancer? Radiother Oncol 63:151–157

    CrossRef  PubMed  Google Scholar 

  • Lardinois D, Weder W, Hany TF et al (2003) Staging of non-small-cell lung cancer with integrated positron-emission tomography and computed tomography. N Engl J Med 348:2500–2507

    CrossRef  PubMed  Google Scholar 

  • Le Chevalier T, Arriagada R, Tarayre M et al (1992) Significant effect of adjuvant chemotherapy on survival in locally advanced non-small cell lung carcinoma. J Natl Cancer Inst 84:58

    PubMed  Google Scholar 

  • Machtay M, Lee JH, Shrager JB et al (2001) Risk of death from intercurrent disease is not excessively increased by modern postoperative radiotherapy for high-risk resected non-small-cell lung carcinoma. J Clin Oncol 19:3912–3917

    PubMed  Google Scholar 

  • Maruyama R, Sugio K, Fukuyama Y et al (2000) Evaluation of p53 alterations in occult lymph node metastases. J Surg Oncol 73:143–147

    CrossRef  PubMed  Google Scholar 

  • Massard G, Doddoli C, Gasser B et al (2000) Prognostic implications of a positive bronchial resection margin. Eur J Cardiothorac Surg 17:557–565

    PubMed  Google Scholar 

  • McGibney C, Holmberg O, McClean B et al (1999) Dose escalation of chart in non-small cell lung cancer: is three-dimensional conformal radiation therapy really necessary? Int J Radiat Oncol Biol Phys 45:339–350

    CrossRef  PubMed  Google Scholar 

  • Mountain CF, Dresler CM (1997) Regional lymph node classification for lung cancer staging. Chest 111:1718–1723

    PubMed  Google Scholar 

  • Movsas B, Moughan J, Komaki R et al (2003) Radiotherapy patterns of care study in lung carcinoma. J Clin Oncol 21:4553–4559

    CrossRef  PubMed  Google Scholar 

  • Murphy MJ (2002) Fiducial-based targeting accuracy for external-beam radiotherapy. Med Phys 29:334–344

    CrossRef  PubMed  Google Scholar 

  • Murphy MJ, Martin D, Whyte R et al (2002) The effectiveness of breath-holding to stabilize lung and pancreas tumors during radiosurgery. Int J Radiat Oncol Biol Phys 53:475–482

    CrossRef  PubMed  Google Scholar 

  • Murphy MJ, Chang SD, Gibbs IC et al (2003) Patterns of patient movement during frameless image-guided radiosurgery. Int J Radiat Oncol Biol Phys 55:1400–1408

    CrossRef  PubMed  Google Scholar 

  • Naruke T, Tsuchiya R, Kondo H et al (1999) Lymph node sampling in lung cancer: how should it be done? Eur J Cardiothorac Surg 16[Suppl 1]:17–24

    CrossRef  Google Scholar 

  • Nehmeh SA, Erdi YE, Ling CC et al (2002) Effect of respiratory gating on quantifying PET images of lung cancer. J Nucl Med 43:876–881

    PubMed  Google Scholar 

  • Nestle U, Walter K, Schmidt S et al (1999) 18F-Deoxyglucose Positron Emission Tomography (FDG-Pet) for the planning of radiotherapy in lung cancer: high impact in patients with atelectasis. Int J Radiat Oncol Biol Phys 44:593–597

    CrossRef  PubMed  Google Scholar 

  • Oda M, Watanabe Y, Shimizu J et al (1998) Extent of mediastinal node metastasis in clinical stage I non-small-cell lung cancer: the role of systematic nodal dissection. Lung Cancer 22:23–30

    CrossRef  PubMed  Google Scholar 

  • O'Dell WG, Schell MC, Reynolds D et al (2002) Dose broadening due to target position variability during fractionated breath-held radiation therapy. Med Phys 29:1430–1437

    CrossRef  PubMed  Google Scholar 

  • Onimaru R, Shirato H, Shimizu S et al (2003) Tolerance of organs at risk in small-volume, hypofractionated, image-guided radiotherapy for primary and metastatic lung cancers. Int J Radiat Oncol Biol Phys 56:126–135

    CrossRef  PubMed  Google Scholar 

  • Onishi H, Kuriyama K, Komiyama T et al (2003) A new irradiation system for lung cancer combining linear accelerator, computed tomography, patient self-breath-holding, and patient-directed beam-control without respiratory monitoring devices. Int J Radiat Oncol Biol Phys 56:14–20

    CrossRef  PubMed  Google Scholar 

  • Osman MM, Cohade C, Nakamoto Y et al (2003) Clinically significant inaccurate localization of lesions with PET/CT: frequency in 300 patients. J Nucl Med 44:240–243

    PubMed  Google Scholar 

  • Ozhasoglu C, Murphy MJ (2002) Issues in respiratory motion compensation during external-beam radiotherapy. Int J Radiat Oncol Biol Phys 52:1389–1399

    CrossRef  PubMed  Google Scholar 

  • Passlick B, Izbicki JR, Kubuschok B et al (1996) Detection of disseminated lung cancer cells in lymph nodes: impact on staging and prognosis. Ann Thorac Surg 61:177–182

    CrossRef  PubMed  Google Scholar 

  • Patz EF Jr, Erasmus JJ, McAdams HP et al (1999) Lung cancer staging and management: comparison of contrast-enhanced and non-enhanced helical CT of the thorax. Radiology 212:56–60

    PubMed  Google Scholar 

  • PORT Meta-Analysis Trialists Group (1998) Postoperative radiotherapy in non-small-cell lung cancer: systematic review and meta-analysis of individual patient data from nine randomised controlled trials. Lancet 352:257–263

    Google Scholar 

  • Prenzel KL, Monig SP, Sinning JM et al (2003) Lymph node size and metastatic infiltration in non-small cell lung cancer. Chest 123:463–467

    CrossRef  PubMed  Google Scholar 

  • Qiao X, Tullgren O, Lax I et al (2003) The role of radiotherapy in treatment of stage I non-small cell lung cancer. Lung Cancer 41:1–11

    CrossRef  PubMed  Google Scholar 

  • Roberts PF, Follette DM, von Haag D et al (2000) Factors associated with false-positive staging of lung cancer by positron emission tomography. Ann Thorac Surg 70:1154–1159

    CrossRef  PubMed  Google Scholar 

  • Rosenman JG, Miller EP, Tracton G, et al (1998) Image registration: an essential part of radiation therapy treatment planning. Int J Radiat Oncol Biol Phys 40:197–205

    CrossRef  PubMed  Google Scholar 

  • Rosenzweig KE, Sim SE, Mychalczak B et al (2001) Elective nodal irradiation in the treatment of non-small-cell lung cancer with three-dimensional conformal radiation therapy. Int J Radiat Oncol Biol Phys 50:681–685

    CrossRef  PubMed  Google Scholar 

  • Saunders MI, Dische S, Barrett A et al (1997) Continuous hyperfractionated accelerated radiotherapy (CHART) versus conventional radiotherapy in non-small-cell lung cancer: a randomised multicenter trial. Lancet 350:161–165

    CrossRef  PubMed  Google Scholar 

  • Schaake-Koning C, van den Bogaert W, Dalesio O et al (1992) Effects of concomitant cisplatin and radiotherapy on inoperable non-small cell lung cancer. N Engl J Med 326:524–530

    PubMed  Google Scholar 

  • Senan S, van Sornsen de Koste J, Samson M et al (1999) Evaluation of a target contouring protocol for 3D conformal radiotherapy in non-small cell lung cancer. Radiother Oncol 53:247–255

    CrossRef  PubMed  Google Scholar 

  • Senan S, Burgers JA, Samson MJ et al (2002a) Can elective nodal irradiation be omitted in stage III non-small cell lung cancer? An analysis of recurrences in a phase II study of induction chemotherapy and ‘involved-field’ radiotherapy. Int J Radiat Oncol Biol Phys 54:999–1006

    CrossRef  PubMed  Google Scholar 

  • Senan S, Lagerwaard FJ, Nijssen-Visser MR et al (2002b) Incorporating lung tumor mobility in radiotherapy planning. Int J Radiat Oncol Biol Phys 52:1142–1143

    CrossRef  PubMed  Google Scholar 

  • Senan S, DeRuysscher D, Giraud P (2004) Literature-based recommendations for treatment planning and execution for high-precision radiotherapy in lung cancer. Radiother Oncol 71:139–146

    CrossRef  PubMed  Google Scholar 

  • Seppenwoolde Y, Shirato H, Kitamura K et al (2002) Precise and real-time measurement of 3D tumor motion in lung due to breathing and heartbeat, measured during radiotherapy. Int J Radiat Oncol Biol Phys 53:822–834

    PubMed  Google Scholar 

  • Shennib J, Bogart A, Herndon J et al (2000) Thorascopic wedge resection and radiotherapy for T1N0 Non-Small Cell Lung Cancer (NSCLC) in high risk patients: preliminary analysis of a CALGB and ECOG Phase II Trial. Int J Radiat Oncol Biol Phys 48[Suppl 1]:232

    CrossRef  Google Scholar 

  • Shimizu S, Shirato H, Ogura S et al (2001) Detection of lung tumor movement in real-time tumor-tracking radiotherapy. Int J Radiat Oncol Biol Phys 51:304–310

    CrossRef  PubMed  Google Scholar 

  • Shirato H, Shimizu S, Kitamura K et al (2000) Four-dimensional treatment planning and fluoroscopic real-time tumor tracking radiotherapy for moving tumor. Int J Radiat Oncol Biol Phys 48:435–442

    CrossRef  PubMed  Google Scholar 

  • Shirato H, Harada T, Harabayashi T et al (2003) Feasibility of insertion/ implantation of 2.0-mm-diameter gold internal fiducial markers for precise setup and real-time tumor tracking in radiotherapy. Int J Radiat Oncol Biol Phys 56:240–247

    CrossRef  PubMed  Google Scholar 

  • Sibley GS (1998) Radiotherapy for patients with medically inoperable stage I nonsmall cell lung carcinoma: smaller volumes and higher doses — a review. Cancer 82:433–438

    CrossRef  PubMed  Google Scholar 

  • Sixel KE, Ruschin M, Tirona R et al (2003) Digital fluoroscopy to quantify lung tumor motion: potential for patient-specific planning target volumes. Int J Radiat Oncol Biol Phys 57:717–723

    PubMed  Google Scholar 

  • Slanina J, Laubenberger J (2002) CT-based study on potential mediastinal lymph node spread of patients with lung cancer. Contribution to 3-D treatment planning for adjuvant radiotherapy of the mediastinum. Strahlenther Onkol 178:199–208

    CrossRef  PubMed  Google Scholar 

  • Slotman BJ, Antonisse IE, Njo KH (1996) Limited field irradiation in early stage (T1-2N0) non-small cell lung cancer. Radiother Oncol 41:41–44

    PubMed  Google Scholar 

  • Snijder RJ, Brutel de la Riviere A, Elbers HJ et al (1998) Survival in resected stage I lung cancer with residual tumor at the bronchial resection margin. Ann Thorac Surg 65:212–216

    CrossRef  PubMed  Google Scholar 

  • Soorae AS, Stevenson HM (1979) Survival with residual tumor on the bronchial margin after resection for bronchogenic carcinoma. J Thorac Cardiovasc Surg 78:175–180

    PubMed  Google Scholar 

  • Stevens CW, Munden RF, Forster KM et al (2001) Respiratory-driven lung tumor motion is independent of tumor size, tumor location, and pulmonary function. Int J Radiat Oncol Biol Phys 51:62–68

    CrossRef  PubMed  Google Scholar 

  • Stroom JC, de Boer HC, Huizenga H et al (1999) Inclusion of geometrical uncertainties in radiotherapy treatment planning by means of coverage probability. Int J Radiat Oncol Biol Phys 43:905–919

    CrossRef  PubMed  Google Scholar 

  • Tsujino K, Hirota S, Endo M et al (2003) Predictive value of dose-volume histogram parameters for predicting radiation pneumonitis after concurrent chemoradiation for lung cancer. Int J Radiat Oncol Biol Phys 55:110–115

    CrossRef  PubMed  Google Scholar 

  • Van Herk M, Remeijer P, Rasch C et al (2000) The probability of correct target dosage: dose-population histograms for deriving treatment margins in radiotherapy. Int J Radiat Oncol Biol Phys 47:1121–1135

    CrossRef  PubMed  Google Scholar 

  • Van Sornsen de Koste JR, Lagerwaard FJ, Schuchhard-Schipper RH et al (2001) Dosimetric consequences of tumor mobility in radiotherapy of stage I non-small cell lung cancer — an analysis of data generated using 'slow’ CT scans. Radiother Oncol 61:93–99

    CrossRef  PubMed  Google Scholar 

  • Van Sornsen de Koste JR, Lagerwaard FJ, Nijssen-Visser MRJ et al (2002) Which margins are necessary for incorporating mediastinal nodal mobility in involved field radiotherapy for lung cancer? Int J Radiat Oncol Biol Phys 53:115–119

    Google Scholar 

  • Van Sornsen de Koste JR, Lagerwaard FJ, Nijssen-Visser MR et al (2003a) Tumor location cannot predict the mobility of lung tumors: a 3D analysis of data generated from multiple CT scans. Int J Radiat Oncol Biol Phys 56:348–354

    CrossRef  PubMed  Google Scholar 

  • Van Sornsen de Koste JR, Lagerwaard FJ, de Boer HC et al (2003b) Are multiple CT scans required for planning curative radiotherapy in lung tumors of the lower lobe? Int J Radiat Oncol Biol Phys 55:1394–1399

    CrossRef  PubMed  Google Scholar 

  • Vansteenkiste JF, Stroobants SG, de Leyn PR et al (1997) Mediastinal lymph node staging with FDG-PET scan in patients with potentially operable non-small cell lung cancer: a prospective analysis of 50 cases. Chest 112:1480–1486

    PubMed  Google Scholar 

  • Vansteenkiste JF, Stroobants SG, De Leyn PR et al (1998) Lymph node staging in non-small-cell lung cancer with FDG-PET scan: a prospective study on 690 lymph node stations from 68 patients. J Clin Oncol 16:2142–2149

    PubMed  Google Scholar 

  • Vanuytsel LJ, Vansteenkiste JF, Stroobants SG et al (2000) The impact of (18)F-fluoro-2-deoxy-D-glucose positron emission tomography (FDG-PET) lymph node staging on the radiation treatment volumes in patients with non-small cell lung cancer. Radiother Oncol 55:317–324

    CrossRef  PubMed  Google Scholar 

  • Vedam SS, Keall PJ, Kini VR et al (2003) Acquiring a four-dimensional computed tomography dataset using an external respiratory signal. Phys Med Biol 48:45–62

    CrossRef  PubMed  Google Scholar 

  • Venmans BJ, van Boxem TJ, Smit EF et al (2000) Outcome of bronchial carcinoma in situ. Chest 117:1572–1576

    CrossRef  PubMed  Google Scholar 

  • Verleden G, Deneffe G, Demedts M et al (1990) Bronchial stump recurrence after surgery for bronchial carcinoma. Eur Respir 3:97–100

    Google Scholar 

  • Weiss E, Hess CF (2003) The impact of gross tumor volume (GTV) and clinical target volume (CTV) definition on the total accuracy in radiotherapy theoretical aspects and practical experiences. Strahlenther Onkol 179:21–30

    CrossRef  PubMed  Google Scholar 

  • Whyte RI, Crownover R, Murphy MJ et al (2003) Stereotactic radiosurgery for lung tumors: preliminary report of a phase I trial. Ann Thorac Surg 75:1097–1101

    CrossRef  PubMed  Google Scholar 

  • Williams TE, Thomas CR Jr, Turrisi AT 3rd et al (2000) Counterpoint: better radiation treatment of non-small cell lung cancer using new techniques without elective nodal irradiation. Semin Radiat Oncol 10:315–323

    PubMed  Google Scholar 

  • Wong JW, Sharpe MB, Jaffray DA et al (1999) The use of active breathing control (ABC) to reduce margin for breathing motion. Int J Radiat Oncol Biol Phys 44:911–919

    CrossRef  PubMed  Google Scholar 

  • Yamada K, Soejima T, Yoden E et al (2002) Improvement of three-dimensional treatment planning models of small lung targets using high-speed multi-slice computed tomographic imaging. Int J Radiat Oncol Biol Phys 54:1210–1216

    CrossRef  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Lagerwaard, F., Senan, S. (2005). Target Volumes in Non-Small Cell Lung Cancer. In: Jeremić, B. (eds) Advances in Radiation Oncology in Lung Cancer. Medical Radiology Radiation Oncology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-26632-1_8

Download citation

  • DOI: https://doi.org/10.1007/3-540-26632-1_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-00522-3

  • Online ISBN: 978-3-540-26632-7

  • eBook Packages: MedicineMedicine (R0)