Skip to main content

Treatment Planning and Conformal Radiotherpay

  • Chapter
  • 864 Accesses

Part of the Medical Radiology Radiation Oncology book series (Med Radiol Radiat Oncol)

Keywords

  • Standardize Uptake Value
  • Dose Distribution
  • Radiat Oncol Biol Phys
  • Intensity Modulate Radiation Therapy
  • Gross Tumor Volume

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/3-540-26632-1_7
  • Chapter length: 19 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   259.00
Price excludes VAT (USA)
  • ISBN: 978-3-540-26632-7
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   329.00
Price excludes VAT (USA)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Allen AM, Siracuse KM, Hayman JA et al (2004) Evaluation of the influence of breathing on the movement and modeling of lung tumors. Int J Radiat Oncol Biol Phys 58:1251–1257

    CrossRef  PubMed  Google Scholar 

  • Armstrong JG (1998) Target volume definition for three-dimensional conformal radiation therapy of lung cancer. Br J Radiol 71:587–594

    PubMed  Google Scholar 

  • Armstrong JG, Zelefsky MJ, Leibel SA et al (1995) Strategy for dose escalation using 3-dimensional conformal radiation therapy for lung cancer. Ann Oncol 6:693–697

    PubMed  Google Scholar 

  • Armstrong J, Raben A, Zelefsky M et al (1997) Promising survival with three-dimensional conformal radiation therapy for non-small cell lung cancer. Radioth Oncol 44:17–22

    CrossRef  Google Scholar 

  • Belderbos JS, de Jaeger K, Heemsbergen WD et al (2003) First results of a phase I/II dose escalation trial in non-small cell lung cancer using three-dimensional conformal radiotherapy. Radiother Oncol 66:119–126

    Google Scholar 

  • Black QC, Grills IS, Kestin LL et al (2004) Defining a radiotherapy target with positron emission tomography. Int J Radiat Oncol Biol Phys (in press)

    Google Scholar 

  • Bowden P, Fisher R, Mac Manus M et al (2002) Measurement of lung tumor volumes using three-dimensional computer planning software. Int J Radiat Oncol Biol Phys 53:566–573

    CrossRef  PubMed  Google Scholar 

  • Burman C, Kutcher GJ, Emami B et al (1991) Fitting of normal tissue tolerance data to an analytic function. Int J Radiat Oncol Biol Phys 21:123–135

    PubMed  Google Scholar 

  • Chetty IJ, Charland PM, Tyagi N et al (2003) Photon beam relative dose validation of the DPM Monte Carlo code in lung-equivalent media. Med Phys 30:563–573

    CrossRef  PubMed  Google Scholar 

  • Cox JD, Azarnia N, Byhardt RW et al (1990) A randomized phase I/II trial of hyperfractionated radiation therapy with total doses of 60.0 Gy to 79.2 Gy: possible survival benefit with greater than or equal to 69.6 Gy in favorable patients with Radiation Therapy Oncology Group stage III non-small-cell lung carcinoma: report of Radiation Therapy Oncology Group 83-11. J Clin Oncol 8:1543–1555

    PubMed  Google Scholar 

  • Derycke S, de Gersem WR, van Duyse BB et al (1998) Conformal radiotherapy of Stage III non-small cell lung cancer: a class solution involving non-coplanar intensity-modulated beams. Int J Radiat Oncol Biol Phys 41:771–777

    CrossRef  PubMed  Google Scholar 

  • De Jaeger K, Hoogeman MS, Engelsman M et al (2003) Incorporating an improved dose-calculation algorithm in conformal radiotherapy of lung cancer: re-evaluation of dose in normal lung tissue. Radiother Oncol 69:1–10

    CrossRef  PubMed  Google Scholar 

  • Ekberg L, Holmberg O, Wittgren L et al (1998) What margins should be added to the clinical target volume in radiotherapy treatment planning for lung cancer? Radiother Oncol 48:71–77

    CrossRef  PubMed  Google Scholar 

  • Ekstrand KE, Barnes WH (1990) Pitfalls in the use of high energy X rays to treat tumors in the lung. Int J Radiat Oncol Biol Phys 18: 249–252

    PubMed  Google Scholar 

  • Emami B, Lyman J, Brown A et al (1991) Tolerance of normal tissue to therapeutic irradiation. Int J Radiat Oncol Biol Phys 21:109–122

    PubMed  Google Scholar 

  • Erdi YE, Mawlawi O, Larson SM et al (1997) Segmentation of lung lesion volume by adaptive positron emission tomography image thresholding. Cancer 80:2505–2509

    CrossRef  PubMed  Google Scholar 

  • Erdi YE, Rosenzweig K, Erdi AK et al (2002) Radiotherapy treatment planning for patients with non-small cell lung cancer using positron emission tomography (PET). Radiother Oncol 62:51–60

    CrossRef  PubMed  Google Scholar 

  • Fowler JF, Chappell R (2000) Non small cell lung tumors repopulate rapidly during radiation therapy. Int J Radiat Oncol Biol Phys 46:516–517

    CrossRef  PubMed  Google Scholar 

  • Giraud P, Antoine M, Larrouy A (2000) Evaluation of microscopic tumor extension in non-small-cell lung cancer for three-dimensional conformal radiotherapy planning. Int J Radiat Oncol Biol Phys 48:1015–1024

    CrossRef  PubMed  Google Scholar 

  • Gould MK, Kuschner WG, Rydzak CE et al (2003)Test performance of positron emission tomography and computed tomography for mediastinal staging in patients with non-small-cell lung cancer: a meta-analysis. Ann Intern Med 139:879–892

    PubMed  Google Scholar 

  • Graham MV, Purdy JA, Emami B et al (1995) Preliminary results of a prospective trial using three dimensional radiotherapy for lung cancer. Int J Radiat Oncol Biol Phys 33:993–1000

    CrossRef  PubMed  Google Scholar 

  • Graham MV, Purdy JA, Emami BE et al (1999) Clinical dose volume histogram analysis for pneumonitis after 3D treatment for non-small cell lung cancer (NSCLC). Int J Radiat Oncol Biol Phys 45:323–329

    CrossRef  PubMed  Google Scholar 

  • Grills IS, Yan D, Martinez AA et al (2003) Potential for reduced toxicity and dose escalation in the treatment of inoperable non-small-cell lung cancer: a comparison of intensity-modulated radiation therapy (IMRT), 3D conformal radiation, and elective nodal irradiation. Int J Radiat Oncol Biol Phys 57:875–890

    Google Scholar 

  • Harris KM, Adams H, Lloyd DCF et al. (1993) The effect of apparent size of simulated pulmonary nodules of using three standard CT window settings. Clin Radiol 47:241–244

    PubMed  Google Scholar 

  • Hayman JA, Martel MK, Ten Haken RK et al (2001) Dose escalation in non-small-cell lung cancer using three-dimensional conformal radiation therapy: update of a phase I trial. J Clin Oncol 19:127–136

    PubMed  Google Scholar 

  • Hazuka MB, Turrisi AT 3rd, Lutz ST et al (1993) Results of high-dose thoracic irradiation incorporating beam's eye view display in non-small cell lung cancer: a retrospective multivariate analysis. Int J Radiat Oncol Biol Phys 27:273–284

    PubMed  Google Scholar 

  • ICRU (1993) Prescribing, recording and reporting photon beam therapy. Report 50. ICRU Press, Bethesda, MD, USA

    Google Scholar 

  • Kiffer J, Berlangieri S, Scott A et al (1998) The contribution of FDG positron emission tomographic imaging to radiotherapy planning in lung cancer. Lung Cancer 19:167–177

    CrossRef  PubMed  Google Scholar 

  • Klein EE, Morrison A, Purdy JA et al (1997) A volumetric study of measurements and calculations of lung density corrections for 6 and 18 MV photons. Int J Radiat Oncol Biol Phys 37:1163–1170

    CrossRef  PubMed  Google Scholar 

  • Kubo HD, Len PM, Minohara S et al (2000) Breathing-synchronized radiotherapy program at the University of California Davis Cancer Center, Medical Physics 27:346–353

    CrossRef  PubMed  Google Scholar 

  • Kutcher GJ, Burman C, Brewster L et al (1991) Histogram reduction method for calculating complication probabilities for three-dimensional treatment planning evaluations. Int J Radiat Oncol Biol Phys 21:137–146

    PubMed  Google Scholar 

  • Kwa SL, Lebesque JV, Theuws JC, et al (1998) Radiation pneumonitis as a function of mean lung dose: an analysis of pooled data of 540 patients. Int J Radiat Oncol Biol Phys 42:1–9

    CrossRef  PubMed  Google Scholar 

  • Lyman JT (1985) Complication probability as assessed from dose volume histograms. Radiat Res 8:13–19

    Google Scholar 

  • Mackie TR, el-Khatib E, Battista J et al (1985) Lung dose corrections for 6-and 15-MV x rays. Med Phys 12:327–332

    CrossRef  PubMed  Google Scholar 

  • Mah K, Caldwell CB, Ung YC et al (2002) The impact of (18)FDG-PET on target and critical organs in CT-based treatment planning of patients with poorly defined non-small-cell lung carcinoma: a prospective study. Int J Radiat Oncol Biol Phys 52:339–350

    CrossRef  PubMed  Google Scholar 

  • Marks LB, Munley MT, Bentel GC et al (1997) Physical and biological predictors of changes in whole-lung function following thoracic irradiation. Int J Radiat Oncol Biol Phys 39:563–570

    CrossRef  PubMed  Google Scholar 

  • Marnitz S, Stuschke M, Bohsung J, Moys et al (2002) Intraindividual comparison of conventional three-dimensional radiotherapy and intensity modulated radiotherapy in the therapy of locally advanced non-small cell lung cancer a planning study. Strahlenther Onkol 178:651–658

    CrossRef  PubMed  Google Scholar 

  • Martel MK, Ten Haken RK, Hazuka MB et al (1994) Dose-volume histogram and 3-D treatment planning evaluation of patients with pneumonitis. Int J Radiat Oncol Biol Phys 28:575–581

    PubMed  Google Scholar 

  • Martel MK, Ten Haken RK, Hazuka MB et al (1999) Estimation of tumor control probability model parameters from 3-D dose distributions of non-small cell lung cancer patients. Lung Cancer 24:31–37

    CrossRef  PubMed  Google Scholar 

  • McShan DL, Fraass BA, Lichter AS (1990) Full integration of the beam's eye view concept into computerized treatment planning. Int J Radiat Oncol Biol Phys 18:1485–1494

    PubMed  Google Scholar 

  • Mehta M, Scrimger R, Mackie R et al (2001) A new a roach to dose escalation in non-small-cell lung cancer. Int J Radiat Oncol Biol Phys 49:23–33

    CrossRef  PubMed  Google Scholar 

  • Munley M, Marks L, Scarfone C et al (1999) Multimodality nuclear medicine imaging in 3-D radiation treatment planning for lung cancer: challenges and prospects. Lung Cancer 23:105–114

    PubMed  Google Scholar 

  • Narayan S, Kessler M, Martel MK (2004a) 18FDG-PET in radiation therapy treatment planning: influence of minimum threshold intensity on tumor volume definition for lung cancer. Int J Radia Oncol Biol Phys (in press)

    Google Scholar 

  • Narayan S, Henning GT, Ten Haken RK et al (2004b) Results following treatment to dose of 92.4 or 102.9 Gy on a phase I dose escalation study for non-small cell lung cancer. Lung Cancer 44:79–88

    CrossRef  PubMed  Google Scholar 

  • Nestle U, Walter K, Schmidt S et al (1999) FDG PET for the planning of radiotherapy in lung cancer: high impact in patients with atelectasis. Int J Radiat Oncol Biol Phys 44:593–597

    CrossRef  PubMed  Google Scholar 

  • Oetzel D, Schraube P, Hensley F et al (1995) Estimation of pneumonitis risk in three-dimensional treatment planning using dose-volume histogram analysis. Int J Radiat Oncol Biol Phys 33:455–460

    CrossRef  PubMed  Google Scholar 

  • Orton CG, Chungbin S, Klein EE et al (1998) Study of lung density corrections in a clinical trial (RTOG 88-08). Radiation Therapy Oncology Group. Int J Radiat Oncol Biol Phys 41:787–794

    CrossRef  PubMed  Google Scholar 

  • Paulino AC, Johnstone AS (2004) FDG-PET in radiotherapy treatment planning: Pandora's Box? Int J Radiat Oncol Biol Phys 59:4–5

    CrossRef  PubMed  Google Scholar 

  • Pelizzari CA (1998) Image processing in stereotactic planning: volume visualization and image registration. Med Dosimetry 23:137–145

    CrossRef  Google Scholar 

  • Radiation Therapy Oncology Group RTOG 93-11 (1993) A phase I/II dose escalation study using three dimensional conformal radiation therapy in patients with inoperable nonsmall cell lung cancer. Web page: www.rtog.org

    Google Scholar 

  • Rice RK, Mijnheer BJ, Chin LM (1988) Benchmark measurements for lung dose corrections for X-ray beams. Int J Radiat Oncol Biol Phys 15:399–409

    CrossRef  PubMed  Google Scholar 

  • Robertson JM, Ten Haken RK, Hazuka MB et al (1997) Dose escalation for non-small cell lung cancer using conformal radiation therapy. Int J Radiat Oncol Biol Phys 37:1079–1085

    CrossRef  PubMed  Google Scholar 

  • Rosenzweig KE, Mychalczak B, Fuks Z et al (2000) Final report of the 70,2-Gy and 75,6-Gy dose levels of a phase I dose escalation study using three-dimensional conformal radiotherapy in the treatment of inoperable non-small cell lung cancer. Cancer J 6:82–87

    PubMed  Google Scholar 

  • Schewe JE, Balter JM, Lam KL et al (1996) Measurement of patient setup errors using port films and a computer-aided graphical alignment tool. Med Dosimetry 21:97–104

    CrossRef  Google Scholar 

  • Senan S, van Sornsen de Koste J, Samson M et al (1999) Evaluation of a target contouring protocol for 3D conformal radiotherapy in non-small cell lung cancer. Radiother Oncol 53:247–255

    CrossRef  PubMed  Google Scholar 

  • Senan S, de Ruysscher D, Giraud P et al (2004) Literature-based recommendations for treatment planning and execution in high dose radiotherapy for lung cancer. Radiother Oncol 71:139–146

    CrossRef  PubMed  Google Scholar 

  • Sixel KE, Ruschin M, Tirona R et al (2003) Digital fluoroscopy to quantify lung tumor motion: potential for patient-specific planning target volumes. Int J Radiat Oncol Biol Phys 57:717–723

    PubMed  Google Scholar 

  • Seppenwoolde Y, Lebesque JV, de Jaeger K et al (2003) Comparing different NTCP models that predict the incidence of radiation pneumonitis, Normal tissue complication probability. Int J Radiat Oncol Biol 55:724–735

    CrossRef  PubMed  Google Scholar 

  • Sibley GS, Mundt AJ, Shapiro C et al (1995) The treatment of stage III nonsmall cell lung cancer using high dose conformal radiotherapy. Int J Radiat Oncol Biol Phys 33:1001–1007

    CrossRef  PubMed  Google Scholar 

  • Ten Haken RK, Martel MK, Kessler ML et al (1993) Use of Veff and iso-NTCP in the implementation of dose escalation protocols. Int J Radiat Oncol Biol Phys 27:689–695

    PubMed  Google Scholar 

  • Timmerman R, Papiez L, McGarry R et al (2003) Extracranial stereotactic radioablation: results of a phase I study in medically inoperable stage I non-small cell lung cancer. Chest 124:1946–1955

    CrossRef  PubMed  Google Scholar 

  • Van Sornsen de Koste J, Voet P, Dirkx M et al (2001) An evaluation of two techniques for beam intensity modulation in patients irradiated for stage III non-small cell lung cancer. Lung Cancer 32:145–153

    CrossRef  PubMed  Google Scholar 

  • Vanuytsel LJ, Vansteenkiste JF, Stroobants SG et al (2000) The impact of (18)F-fluoro-2-deoxy-D-glucose positron emission tomography (FDG-PET) lymph node staging on the radiation treatment volumes in patients with non-small cell lung cancer. Radiother Oncol 55:317–324

    CrossRef  PubMed  Google Scholar 

  • Wang L, Yorke E, Chui CS (2002) Monte Carlo evaluation of 6 MV intensity modulated radiotherapy plans for head and neck and lung treatments. Med Phys 29:2705–2717

    CrossRef  PubMed  Google Scholar 

  • Wong JW, Sharpe MB, Jaffray DA et al (1999) The use of active breathing control (ABC) to reduce margin for breathing motion. Int J Radiat Oncol Biol Phys 44:911–919

    CrossRef  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Marthl, M.K. (2005). Treatment Planning and Conformal Radiotherpay. In: Jeremić, B. (eds) Advances in Radiation Oncology in Lung Cancer. Medical Radiology Radiation Oncology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-26632-1_7

Download citation

  • DOI: https://doi.org/10.1007/3-540-26632-1_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-00522-3

  • Online ISBN: 978-3-540-26632-7

  • eBook Packages: MedicineMedicine (R0)