Innovative Electronic Devices Based on Nanostructures

  • H. C. Neitzert


Gate Voltage Quantum Cascade Laser Negative Differential Resistance Coulomb Blockade Resonant Tunneling Diode 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 303.
    Sun JP, Haddad GI, Mazumder P, Schulman JN (1998) Resonant Tunneling Diodes: Models and Properties. Proceedings of the IEEE, vol 86, p 641CrossRefGoogle Scholar
  2. 304.
    Haddad GI, Mazumder P (1997) Tunneling devices and applications in high functionality/speed digital circuits. Sol St Electron, vol 41, p 1515CrossRefGoogle Scholar
  3. 305.
    Fay P, Lu J, Xu Y, Bernstein GH, Chow DH, Schulman JN (2002) Microwave Performance and Modeling of InAs/AlSb/GaSb Resonant Interband Tunneling Diodes, IEEE Trans Electron. Dev, vol 49, p 19CrossRefGoogle Scholar
  4. 306.
    Chow DH, Dunlap HL, Williamson W, Enquist S, Gilbert BK, Subramaniam S, Lei PM, Bernstein GH (1996) InAs/AlSb/GaSb Resonant Interband Tunneling Diodes and Au-on-InAs/AlSb-Superlattice Schottky Diodes for Logic Circuits. IEEE Electron Dev Lett, vol 17, p 69CrossRefGoogle Scholar
  5. 307.
    Tsutsui M, Watanabe M, Asada M (1999) Resonant Tunneling Diodes in Si/CaF2 Heterostructures Grown by Molecular Beam Epitaxy. Jpn J Appl Phys, vol 38, p L 920CrossRefGoogle Scholar
  6. 308.
    Ismail K, Meyerson BS, Wang PJ (1991) Electron resonant tunneling in Si/SiGe double barrier diodes. Appl Phys Lett, vol 59, p 973CrossRefGoogle Scholar
  7. 309.
    See P, Paul DJ, Holländer B, Mantl S, Zozoulenko I, Berggren KF (2001) High Performance Si/Si1−xGex Resonant Tunneling Diodes. IEEE Electron Dev Lett, vol 22, p 182CrossRefGoogle Scholar
  8. 310.
    Ishikawa Y, Ishihara T, Iwasaki M, Tabe M (2001) Negative differential conductance due to resonant tunneling through SiO2 / single crystalline-Si double barrier structure. Electron Lett, vol 37, p 1200CrossRefGoogle Scholar
  9. 311.
    Suemitsu T, Ishii T, Yokoyama H, Enoki T, Ishii Y, Tamamura T (1999) 30-nm-Gate InP-Based Lattice-Matched High Electron Mobility Transistors with 350 GHz Cutoff Frequency. Jpn J Appl Phys, vol 38, p L 154CrossRefGoogle Scholar
  10. 312.
    Zeuner M, Hackbarth T, Höck G, Behammer D, König U (1999) High-Frequency SiGe-n-MODFET for Microwave Applications. IEEE Microwave and Guided Wave Lett, vol 9, p 410CrossRefGoogle Scholar
  11. 313.
    Moon JS, Micovic M, Janke P, Hashimoto P, Wong WS, Widman RD, McCray L, Kurdoghlian A, Nguyen C (2001) GaN/AlGaN HEMTS operating at 20 GHz with continuous-wave power density >6 W / mm. Electron Lett, vol 37, p 528CrossRefGoogle Scholar
  12. 314.
    Eisele H, Haddad GI (1998) Two-Terminal Millimeter-Wave Sources. IEEE Trans Microwave Theory Tech, vol 46, p 739CrossRefGoogle Scholar
  13. 315.
    Peterson DF, Klemer DP (1989) Multiwatt IMPATT power amplification for EHF Applications. Microwave J, vol 32, p 107Google Scholar
  14. 316.
    Eisele H (2002) High performance InP Gunn devices with 34 mW at 193 GHz. Electron Lett, vol 38, p 92CrossRefGoogle Scholar
  15. 317.
    Teng SJ, Goldwasser RE (1989) High-performance second-harmonic operation W-band Gunn devices. IEEE Electron Dev Lett, vol 10, p 412CrossRefGoogle Scholar
  16. 318.
    Brown ER, Söderström JR, Parker CD, Mahoney LJ, Molvar KM, McGill TC (1991) Oscillations up to 712 GHz in InAs/AlSb resonant tunneling diodes. Appl Phys Lett, vol 58, p 2291CrossRefGoogle Scholar
  17. 319.
    Mazumder P, Kulkarni S, Bhattacharya M, Sun JP, Haddad GI (1998) Digital Circuit Applications of Resonant Tunneling Devices. Proceedings of the IEEE, vol 86, p 664CrossRefGoogle Scholar
  18. 320.
    Otten W, Glösekötter P, Velling P, Brennemann A, Prost W, Goser KF, Tegude FJ (2001) InP-based monolithically integrated RTD/HBT MOBILE for logic circuits. Conf Proc of the 13th IRPM, Nara, p 232Google Scholar
  19. 321.
    Kawano Y, Ohno, Y, Kishimoto, S, Maezawa K, Mizutani T (2002) 50 GHz frequency divider using resonant tunnelling chaos circuit. Electron Lett, vol 38, p 305CrossRefGoogle Scholar
  20. 322.
    Velling P, Janssen G, Auer U, Prost W, Tegude FJ (1998) NAND/NOR logic circuit using single InP based RTBT. El Lett, vol 34, p 2390CrossRefGoogle Scholar
  21. 323.
    Chen W, Rylyakov VP, Lukens JE, Likharev KK (1999) Rapid Single Flux Quantum T-Flip Flop Operating up to 770 GHz: IEEE Trans Appl Supercond, vol 9, p 3212Google Scholar
  22. 324.
    Kholod AN, Liniger M, Zaslavsky A, d’Avitaya FA (2001) Cascaded resonant tunneling diode quantizer for analog-to-digital flash conversion. Appl Phys Lett, vol 79, p 129CrossRefGoogle Scholar
  23. 325.
    Sano K, Murata K, Otsuji T, Akeyoshi T, Shimizu N, Sano E (2001)An 80-Gb / s Optoelectronic Delayed Flip-Flop IC Using Resonant Tunneling Diodes and Uni-Traveling-Carrier Photodiode. IEEE Solid State Circ, vol 36, p 281CrossRefGoogle Scholar
  24. 326.
    Kawamura Y, Asai H, Matsuo S, Amano C (1992) InGaAs-InAlAs Multiple Quantum Well Optical Bistable Devices Using the Resonant Tunneling Effect. IEEE J Quant Electron, vol 28, p 308CrossRefGoogle Scholar
  25. 327.
    Goldstein S, Rosewater D (2002) Digital logic using molecular electronics. Proc of the IEEE Int Solid-State Circuits Conf (ISSCC), San Francisco, p 12.5Google Scholar
  26. 328.
    Bryllert T, Borgstrom M, Sass T, Gustason B, Landin L, Wernersson LE, Seifert W, Samuelson L (2002) Designed emitter states in resonant tunneling through quantum dots. Appl Phys Lett, vol 80, p 2681CrossRefGoogle Scholar
  27. 329.
    Capasso F, Gmachl C, Paiella R, Tredicucci A, Hutchinson AL, Sivco DL, Baillargeon JN, Cho AY, Liu HC (2000) New Frontiers in Quantum Cascade Lasers and Applications. IEEE J Select Topics Quantum Electron, vol 6, p 931CrossRefGoogle Scholar
  28. 330.
    Liu HC (2000) Quantum Well Infrared Photodetector Physics and Novel Devices. In: Crandall BC (ed) Semiconductors and Semimetals. Academic Press, San Diego, vol 62, p 129Google Scholar
  29. 331.
    O’Reilly E (1994) Quantum cascade laser has no role for holes. Physics World, p 24Google Scholar
  30. 332.
    Faist J, Capasso F, Sivco DL, Hutchinson AL, Cho AY (1995) Vertical transition quantum cascade laser with Bragg confined excited state. Appl Phys Lett, vol 66, p 538CrossRefGoogle Scholar
  31. 333.
    Yang QK, Bradshaw JL, Bruno JD, Pham JT, Wortmann DE (2002) Mid-Infrared Type-II Interband Cascade Lasers. IEEE J Quantum Electron, vol 38, p 559CrossRefGoogle Scholar
  32. 334.
    Yang QK, Mann C, Fuchs F, Kiefer R, Köhler K, Rollbühler N, Schneider H, Wagner J (2002) Improvement of λ = 5 µm quantum cascade lasers by blocking barriers in the active regions. Appl Phys Lett, vol 80, p 2048CrossRefGoogle Scholar
  33. 335.
    Hofstetter D, Beck M, Aellen T, Faist J (2001) High-temperature operation of distributed feedback quantum-cascade lasers at 5.3 µm. Appl Phys Lett, vol 78, p 665Google Scholar
  34. 336.
    Scamarcio G, Capasso F, Sirtori C, Faist J, Hutchinson AL, Sivco DL, Cho AY (1997) High-Power Infrared (8-Micrometer Wavelength) Superlattice Lasers, Science, vol 276, p 773CrossRefPubMedGoogle Scholar
  35. 337.
    Faist J, Müller A, Beck M, Hofstetter D, Blaser S, Oesterle U, Ilegems M (2000) A Quantum Cascade Laser Based on an n-i-p-i Superlattice. IEEE Phot Techn Lett, vol 12, p 263CrossRefGoogle Scholar
  36. 338.
    Page H, Kruck P, Barbieri S, Sirtori C, Stellmacher M, Nagle J (1999) High peak power (1.1 W) (Al)GaAs quantum cascade laser emitting at 9.7 µm. El Lett, vol 35, p 1848CrossRefGoogle Scholar
  37. 339.
    Hofstetter D, Faist J, Beck M, Müller A, Oesterle U (1999) Demonstration of high performance 10.16 µm quantum-cascade distributed feedback lasers fabricated without epitaxial regrowth. Appl Phys Lett, vol 75, p 665CrossRefGoogle Scholar
  38. 340.
    Tredicucci A, Capasso F, Gmachl C, Sivco DL, Hutchinson AL, Chu SN, Cho AY (2000) Continuous wave operation of long wavelength λ = 11 um) inter-miniband lasers. Electron Lett, vol 36, p 876CrossRefGoogle Scholar
  39. 341.
    Anders S, Schrenk W, Gornik E, Strasser G (2002) Room-temperature emission of GaAs/AlGaAs superlattice quantum-cascade lasers at 12.6 µm. Appl Phys Lett, vol 80, p 1864CrossRefGoogle Scholar
  40. 342.
    Rochat M, Hofstetter D, Beck M, Faist J (2001) Long wavelength (λ = 16µm), room-temperature, single-frequency quantum-cascade lasers based on a bound-to-continuum transition. Appl Phys Lett, vol 79, p 4271CrossRefGoogle Scholar
  41. 343.
    Colombelli R, Tredicucci A, Gmachl C, Capasso F, Sivco DL, Sergent AM, Hutchinson AL, Cho AY (2001) Continuous wave operation of λ = 19 µm surface-plasmon quantum cascade lasers. El Lett, vol 37, p 1023CrossRefGoogle Scholar
  42. 344.
    Colombelli R, Capasso F, Gmachl C, Hutchinson AL, Sivco DL, Tredicucci A, Wanke MC, Sergent AM, Cho AY (2001) Far-infrared surface-plasmon quantum-cascade lasers at 21.5 µm and 24 µm wavelengths. Appl Phys Lett, vol 78, p 2620CrossRefGoogle Scholar
  43. 345.
    Bewley WW, Lee H, Vurgaftman I, Menna RJ, Felix CL, Martinelli RU, Stokes DW, Garbuzov DZ, Meyer JR, Maiorov M, Conolly JC, Sugg AR, Olsen GH (2000) Continuous-wave operation of λ = µ3.25 m broadened-waveguide W quantum-well diode lasers up to T = 195 K. Appl Phys Lett, vol 76, p 256CrossRefGoogle Scholar
  44. 346.
    Faist J, Gmachl C, Capasso F, Sirtori C, Sivco DL, Baillargeon JN, Cho AY (1997) Distributed feedback quantum cascade laser. Appl Phys Lett, vol 70, p 2670CrossRefGoogle Scholar
  45. 347.
    Williams BS, Xu B, Hu Q, Melloch MR (1999) Narrow-linewidth terahertz intersubband emission from three-level systems. Appl Phys Lett, vol 75, p 2927CrossRefGoogle Scholar
  46. 348.
    Köhler R, Tredicucci A, Beltram F, Beere HE, Linfield EH, Davies AG, Ritchie DA, Iotti RC, Rossi F (2002) Terahertz semiconductor-heterostructure laser. Nature, vol 417, p 156PubMedGoogle Scholar
  47. 349.
    Menon VM, Goodhue WD, Karakashian AS, Naweed A, Plant J, Ram-Mohan LR, Gatesman A, Badami V, Waldman J (2002) Dual-frequency quantum-cascade terahertz emitter. Appl Phys Lett, vol 80, p 2454CrossRefGoogle Scholar
  48. 350.
    Nahata A, Yardley JT, Heinz TF (2000) Two-dimensional imaging of continuous-wave terahertz radiation using electro-optic detection. Appl Phys Lett, vol 81, p 963CrossRefGoogle Scholar
  49. 351.
    Carr GL, Martin MC, McKinney WR, Jordan K, Nell GR, Williams GP (2002) High-power terahertz radiation from relativistic electrons. Nature, vol 420, p 153CrossRefPubMedGoogle Scholar
  50. 352.
    Lynch SA, Bates R, Paul DJ, Norris DJ, Cullis AG, Ikonic Z, Kelsall RW, Harrison P, Arnone DD, Pidgeon CR (2002) Intersubband electroluminescence from Si/SiGe cascade emitters at terahertz frequencies. Appl Phys Lett, vol 81, p 1543CrossRefGoogle Scholar
  51. 353.
    Soref RA, Friedman L, Sun G (1998) Silicon intersubband lasers. Superlattices and Microstructures, vol 23, p 427CrossRefGoogle Scholar
  52. 354.
    Martini R, Bethea C, Capasso F, Gmachl C, Paiella R, Whittacker EA, Hwang HY, Sivco DL, Baillargeon JN, Cho AY (2002) Free-space optical transmission of multimedia satellite data streams using mid-infrared quantum cascade lasers. El Lett, vol 38, p 181CrossRefGoogle Scholar
  53. 355.
    Martini R, Paiella R, Gmachl C, Capasso F, Whittacker EA, Liu HC, Hwang HY, Sivco DL, Baillargeon JN, Cho AY (2001) High-speed digital data transmission using mid-infrared quantum cascade lasers. El Lett, vol 37, p 1290CrossRefGoogle Scholar
  54. 356.
    Blaser S, Hofstetter D, Beck M, Faist J (2001) Free-space optical data link using Peltier-cooled quantum cascade laser. Electron Lett, vol 37, p 778CrossRefGoogle Scholar
  55. 357.
    Kosterev AA, Curl RF, Tittel FK, Gmachl C, Capasso F, Sivco DL, Baillargeon JN, Hutchinson AL, Cho AY (2000) Trace gas detection in ambient air with cw and pulsed QC lasers. Proc of CLEO 2000, p 513Google Scholar
  56. 358.
    Hofstetter D, Beck M, Faist J (2002) Quantum cascade laser structures as photodetectors. Appl Phys Lett, vol 81, p 2683CrossRefGoogle Scholar
  57. 359.
    Takahashi Y, Fujiwara A, Ono Y, Murase K (2000) Silicon Single-Electron Devices and Their Applications. Proceedings 30th IEEE International Symposium on Multiple-Valued Logic 2000 (ISMVL 2000), p 411Google Scholar
  58. 360.
    Uchida K, Koga J, Ohba R, Toriumi A (2000) Room-Temperature Operation of Multifunctional Single-Electron Transistor Logic. Proc IEDM 2000, p 13.7.1Google Scholar
  59. 361.
    Likharev KK (1999) Single-Electron Devices and Their Applications. Proceedings of the IEEE, vol 87, p 606CrossRefGoogle Scholar
  60. 362.
    Nakamura Y, Chen CD, Tsai JS (1996) 100-K operation of Al-based single-electron transistors. Japan J Appl Phys, vol 35, p L1465CrossRefGoogle Scholar
  61. 363.
    Klein D, Roth R, Lim AKL, Alivisatos AP, McEuen P (1997) A single-electron transistor made from a cadmium selenide nanocrystal. Nature, vol 389, p 699CrossRefGoogle Scholar
  62. 364.
    Ralph DC, Black CT, Tinkham M (1997) Gate-voltage studies of discrete electronic states in aluminum nanoparticles. Phys Rev Lett, vol 78, p 4087CrossRefGoogle Scholar
  63. 365.
    Altmeyer S, Hamidi A, Spangenberg B, Kurz H (1997) 77 K single electron transistors fabricated with 0.1 µm technology. J Appl Phys, vol 81, p 8118CrossRefGoogle Scholar
  64. 366.
    Matsumoto K, Ishii M, Segawa K, Oka Y, Vartanian BJ, Harris JS (1996) Room temperature operation of a single electron transistor made by the scanning tunneling microscope nanooxidation process for the TiOx/Ti system. Appl Phys Lett, vol 68, p 34CrossRefGoogle Scholar
  65. 367.
    Takahashi Y, Namatsu H, Kurihara K, Iwdate K, Nagase M, Murase K (1996) Size dependence of the characteristics of Si single-electron transistors on SIMOX substrates. IEEE Trans Electron Devices, vol 43, p 1213CrossRefGoogle Scholar
  66. 368.
    Shirakashi J, Matsumoto K, Miura N, Konagai M (1998) Single-electron charging effects in Nb/Nb oxide-based single electron transistors at room temperature. Appl Phys Lett, vol 72, p 1893CrossRefGoogle Scholar
  67. 369.
    Dolata R, Scherer H, Zorin AB, Niemeyer J (2002) Single electron transistors with high-quality superconducting niobium islands. Appl Phys Lett, vol 80, p 2776CrossRefGoogle Scholar
  68. 370.
    Kawasaki K, Yamazaki D, Kinoshita A, Hirayama H, Tsutsui K, Aoyagi Y (2001) GaN quantum-dot formation by self-assembling droplet epitaxy and application to single-electron transistors. Appl Phys Lett, vol 79, p 2243CrossRefGoogle Scholar
  69. 371.
    Graf H, Vancea J, Hoffman H (2002) Single-electron tunneling at room temperature in cobalt nanoparticles. Appl Phys Lett, vol 80, p 1264CrossRefGoogle Scholar
  70. 372.
    Fu Y, Willander M, Wang TH (2002) Formation and charge control of a quantum dot by etched trenches and multiple gates. Appl Phys A, vol 74, p 741CrossRefGoogle Scholar
  71. 373.
    Motohisa J, Nakajima F, Fukui T, Van der Wiel WG, Elzerman JM, De Franceschi S, Kouwenhoven LP (2002) Fabrication and low-temperature transport properties of selectively grown dual-gate single-electron transistors. Appl Phys Lett, vol 80, p 2797CrossRefGoogle Scholar
  72. 374.
    Ono Y, Takahashi Y, Yamasaki K, Nagase M, Namatsu H, Kurihara K, Murase K (2000) Fabrication Method for IC-oriented Si Single-Electron Transistors. IEEE Trans Electron Devices, vol 47, p 147CrossRefGoogle Scholar
  73. 375.
    Tachiki M, Seo H, Banno T, Sumikawa Y, Umezawa H, Kawarada H (2002) Fabrication of single-hole transistors on hydrogenated diamond surface using atomic force microscope. Appl Phys Lett, vol 81, p 2854CrossRefGoogle Scholar
  74. 376.
    Pekola JK, Hirvi KP, Kauppinen JP, Paalanen MA (1994) Thermometry by arrays of tunnel junctions. Phys Rev Lett, vol 73, p 2903CrossRefPubMedGoogle Scholar
  75. 377.
    Keller MW, Martinis JM, Zimmermann NM, Steinbach AH (1996) Accuracy of electron counting using a 7-junction electron pump. Appl Phys Lett, vol 69, p 1804CrossRefGoogle Scholar
  76. 378.
    Krupenin VA, Presnov DE, Savvateev MN, Scherer H, Zorin AB, Niemeyer J (1998) Noise in Al Single Electron Transistors of stacked design. J Appl Phys, vol 84, p 3212CrossRefGoogle Scholar
  77. 379.
    Zimmerman NM, Huber WH, Fujiwara A, Takahashi Y (2001) Excellent charge offset stability in a Si-biased single-electron tunneling transistor. Appl Phys Lett, vol 79, p 3188CrossRefGoogle Scholar
  78. 380.
    Vettinger P, Cross G, Despont M, Drechsler U, Duerig U, Gotsmann B, Haeberler W, Lantz MA, Rothuizen HE, Stutz R, Binnig GK (2002) The “Millipede”-Nanotechnology Entering Data Storage. IEEE Trans Nanotechnology, vol 1, p 39CrossRefGoogle Scholar
  79. 381.
    Inokawa H, Fujiwara A, Takahashi Y (2001) Multipeak negative-differential-resistance device by combining single-electron and metal-oxide-semiconductor transistors. Appl Phys Lett, vol 79, p 3818CrossRefGoogle Scholar
  80. 382.
    Knobel R, Yung CS, Cleland AN (2001) Single-electron transistor as a radio-frequency mixer. Appl Phys Lett, vol 81, p 532CrossRefGoogle Scholar
  81. 383.
    McEuen PL, Fuhrer MS, Park H (2002) Single-Walled Carbon Nanotube Electronics. IEEE Trans Nanotechnology, vol 1, p 78CrossRefGoogle Scholar
  82. 384.
    Iijima S, Ichihashi T (1993) Single-shell carbon nanotubes of 1-nm diameter. Nature, vol 363, p 603Google Scholar
  83. 385.
    Bethune DS, Kiang CH, Devries MS, Gorman G, Savoy R, Vasquez J, Beyers R (1993) Cobalt-catalyzed groth of carbon nanotubes with single-atomic-layerwalls. Nature, vol 363, p 605CrossRefGoogle Scholar
  84. 386.
    Thess A, Lee R, Nikolaev P, Dai H, Petit P, Robert J, Chunhui X, Young Hee L, Seong Gon K, Rinzler AG, Colbert DT, Scuseria GE, Tombnek D, Fischer JE, Smalley RE (1996) Crystalline ropes of metallic carbon nanotubes. Science, vol 273, p 483PubMedGoogle Scholar
  85. 387.
    Kong J, Soh HT, Cassell A, Quate CF, Dai H (1998) Synthesis of single single-walled carbon nanotubes on patterned silicon wafers. Nature, vol 395, p 878CrossRefGoogle Scholar
  86. 388.
    Bachtold A, Fuhrer MS, Plyasunov S, Forero M, Anderson EH, Zettl ZA, McEuen PL (2000) Scanned probe microscopy of electronic transport in carbon nanotubes, Phys Rev Lett, vol 84, p 6082CrossRefPubMedGoogle Scholar
  87. 389.
    Tans SJ, Verschueren ARM, Dekker C (1998) Room-temperature transistor based on a single carbon nanotube. Nature, vol 393, p 49CrossRefGoogle Scholar
  88. 390.
    Guillorn MA, Hale MD, Merculov VI, Simpson ML, Eres GY, Cui H, Puretzky AA, Geohegan DB (2002) Operation of individual integrally gated carbon nanotube field emitter cells. Appl Phys Lett, vol 81, p 2860CrossRefGoogle Scholar
  89. 391.
    Martel R, Schmidt T, Shea HR, Hertel T, Avouris P (1998) Single-and multi-wall carbon nanotube field-effect transistors. Appl Phys Lett, vol 73, p 2447CrossRefGoogle Scholar
  90. 392.
    Franklin NR, Wang Q, Tombler TW, Javey A, Shim M, Dai H (2002) Integration of suspended carbon nanotube arrays into electronic devices and electromechanical systems. Appl Phys Lett, vol 81, p 913CrossRefGoogle Scholar
  91. 393.
    Kong J, Cao J, Dai H (2002) Chemical profiling of single nanotubes: Intramolecular p-n-p junctionsand on-tube single-electron transistors. Appl Phys Lett, vol 80, p 73CrossRefGoogle Scholar
  92. 394.
    Li J, Papadoupolos C, Xu JM (1999) Highly-ordered carbon nanotube arrays for electronics applications. Appl Phys Lett, vol 75, p 367CrossRefGoogle Scholar
  93. 395.
    Choi WB, Chu JU, Jeong KS, Bae EJ, Lee JW, Kim JJ, Lee JO (2001) Ultrahigh-density nanotransistors by using selectively grown vertical carbon nanotubes. Appl Phys Lett, vol 79, p 3696CrossRefGoogle Scholar
  94. 396.
    Bachtold A, Hadley P, Nakanishi T, Dekker C (2001) Logic Circuits with Carbon Nanotube Transistors. Science, vol 294, p 1317CrossRefPubMedGoogle Scholar
  95. 397.
    Hu J, Ouyang M, Yang P, Lieber CM (1999) Controlled growth and electrical properties of heterojunctions of carbon nanotubes and silicon nanowires. Nature, vol 399, p 48CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • H. C. Neitzert

There are no affiliations available

Personalised recommendations