Electron Beam Lithography Optical Lithography Electron Beam Exposure Projection Exposure Stencil Mask 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 217.
    Zaitsev AM, Kosaca G, Richarz B, Raiko V, Job R, Fries T, Fahrner WR (1998) Thermochemical polishing of CVD diamond films. Diam Rel Mat, vol 7, p 1108CrossRefGoogle Scholar
  2. 218.
    Weima JA, Zaitsev AM, Job R, Kosaca GC, Blum F, Grabosch G, Fahrner WR (1999) Nano-Polishing and Subsequent Optical Characterization of CVD Polycrystalline Diamond Films. Proc 25th Ann Conf IEEE Ind Elect Soc, p 50. IECON, San Jose (CA)Google Scholar
  3. 219.
    Weima JA, Fahrner WR, Job R (2001) Experimental investigation of the parameter dependency of the removal rate of thermochemically polished CVD diamonds. J Electrochem Soc, accepted for publicationGoogle Scholar
  4. 220.
    Weima JA, Fahrner WR, Job, R (2001) A Model of the Thermochemical Polishing of CVD Diamond Films on Transition Metals with Emphasis on Steel. Submitted to the J Electrochem SocGoogle Scholar
  5. 221.
    Weima JA, Job R, Fahrner WR (2002) Thermochemical Beveling of CVD Diamond Films Intended for Precision Cutting and Measurement applications. Diamond Relat Mat, vol 11, p 1537CrossRefGoogle Scholar
  6. 222.
    Momose HS, Ono M, Yoshitomi T, Ohguro T, Nakamura S, Saito M Iwai H (1996) 1.5 nm Direct-Tunneling Gate Oxide Si MOSFET’s. IEEE Trans, vol ED 43, p 1233Google Scholar
  7. 223.
    Hilleringmann U (1999) Silizium-Halbleitertechnologie. Teubner, Stuttgart, p 70Google Scholar
  8. 224.
    Fa. Oxford Instruments/Plasma Technology (Status of Sep. 2001) www.oxfordplasma.deGoogle Scholar
  9. 225.
    Cullmann E, Cooper K, Reyerse C (1991) Optimized Contact/Proximity Lithography. Suss Report, vol 5, p 1–4Google Scholar
  10. 226.
    Goodberlet JG, Dunn BL (2000) Deep-Ultraviolet Contact Photolithography. Microelectronic Engineering, vol 53, p 95CrossRefGoogle Scholar
  11. 227.
    Ono M, Saito M, Yoshitomi T, Fiegna C, Ohguro T, Iwai H (1995) A 40 nm gate length n-MOSFET. IEEE Transactions on Electron Devices, vol 42, no 10, p 1822CrossRefGoogle Scholar
  12. 228.
    Zell T (2000) Lithographie. Dresdner Sommerschule MikroelektronikGoogle Scholar
  13. 229.
    Coopmans F, Roland B (1986) Desire: a novel dry developed resist system. Proc SPIE, vol 631, p 34Google Scholar
  14. 230.
    Seeger DE, La Tulipe DC, Kunz jr RR, Garza CM, Hanratty MA (1997) Thin-film imaging: Past, present, prognosis. IBM Journal of Research and Development, vol 41, no 1/2 (Status of Nov. 2002), and Goethals AM, van Den Hove L (2002) 0.18 µ Lithography Using 248 nm Deep UV and Top Surface Imaging (Status of Nov. 2002)Google Scholar
  15. 231.
    Sandia National Laboratories (2002) News (Status of Nov. 2002), (Status of Nov. 2002)Google Scholar
  16. 232.
    Fraunhofer Institut für Lasertechnik ILT (2002) Lampen für extremes Ultraviolett (Status of Nov. 2002)Google Scholar
  17. 233.
    Muray LP, Lee KY, Spallas JP, Mankos M, Hsu Y, Gmur MR, Gross HS, Stebler CB, Chang TH (2000) Experimental evaluation of arrayed microcolumn lithography. Microelectronic Engineering, vol 53, p 271CrossRefGoogle Scholar
  18. 234.
    Lucent Technologies (2002) (Status of Nov. 2002)Google Scholar
  19. 235.
    Lucent Technologies (2002) Next Generation Lithography (NGL) Mask Formats (Status of Nov. 2002)Google Scholar
  20. 236.
    Stickel W, Langner GO (1999) Prevail: Theory of the Proof-of-Concept Column Electron Optics. J Vacuum Science & Technology B17, no 6, p 2847Google Scholar
  21. 237.
    Kassing R, Käsmeier R, Rangelow IW (2000) Lithographie der nächsten Generation. Phys Blätt, vol 56, p 31Google Scholar
  22. 238.
    Melngailis J (1993) Focused ion beam Lithography. Nucl Instr and Meth, vol B80/81, p 1271Google Scholar
  23. 239.
    Miller T, Knoblauch A, Wilbertz C, Kalbitzer S (1995) Field-ion imaging of a tungsten supertip. Appl Phys, vol A61, p 99Google Scholar
  24. 240.
    Prewett PD, Mair GL (1991) Focused Ion Beams from Liquid Metal Ion Sources. Research Studies Press Ltd, TauntonGoogle Scholar
  25. 241.
    Shinada T, Ishikawa A, Hinoshita C, Koh M, Ohdomari I (2000) Reduction of Fluctuation in Semiconductor Conductivity by one-by-one Ion Implantation of Dopant Atoms. Jpn J Appl Phys, vol 39, p L265CrossRefGoogle Scholar
  26. 242.
    Wieck AD, Ploog K (1990) In-Plane-Gated Quantum Wire Transistor Fabricated with Directly Written Focused Ion Beams. Appl Phys Lett, vol 56, p 928CrossRefGoogle Scholar
  27. 243.
    Wieck AD, Ploog K (1992) High transconductance in-plane-gated transistors. Appl Phys Lett, vol 61, p 1048CrossRefGoogle Scholar
  28. 244.
    Bever T, Klizing KV, Wieck AD, Ploog K (1993) Velocity modulation in focused-ion-beam written in-plane-gate transistors. Appl Phys Lett, vol 63, p 642CrossRefGoogle Scholar
  29. 245.
    Hillmann M (2001) FIB-Lithographie. Dissertation Universität BochumGoogle Scholar
  30. 246.
    Fritz GS, Fresser HS, Prins FE, Kern DP (1999) Lateral pn-Junctions as a novel electron detector for microcolumn systems. J Vac Sci Technol, vol B17, p 2836Google Scholar
  31. 247.
    Rogers JA, Meier M, Dodabalapur A (1998) Using printing and molding techniques to produce distributed feedback and Bragg reflector resonators for plastic lasers. Appl Phys Lett, vol 73, p 1766CrossRefGoogle Scholar
  32. 248.
    Becker H, Gärtner C (2000) Polymer microfabrication methods for microfluidic analytical applications. Electrophoresis, vol 21, p 12CrossRefPubMedGoogle Scholar
  33. 249.
    Scheer HC, Schulz H, Lyebyedyev D (2000) New directions in nanotechnology — Imprint Techniques. In: Pavesi L, Buzaneva E (eds) Frontiers of Nano-Optoelectronic Systems. Kluwer Academic Publishers, p 319Google Scholar
  34. 250.
    Scheer HC, Schulz H, Hoffmann T, Sotomayor Torres CM (2001) Nanoimprint techniques. In: Nalwa HS (ed) Handbook of Thin Film Materials, vol 5. Academic Press, 1Google Scholar
  35. 251.
    Chou SY, Krauss PR, Renstrom PJ (1995) Imprint of sub-25 nm vias and trenches in polymers. Appl Phys Lett, vol 67, p 3114CrossRefGoogle Scholar
  36. 252.
    Chou SY, Krauss PR, Zhang W, Guo L, Zhuang I (1997) Sub-10 nm lithography and applications. J Vac Sci Technol, vol B15, p 2897Google Scholar
  37. 253.
    van Krevelen DW (1990) Properties of Polymers. Elsevier, AmsterdamGoogle Scholar
  38. 254.
    Pfeiffer K, Fink M, Bleidiessel G, Grützner G, Schulz H, Scheer HC, Hoffmann T, Sotomayor Torres CM, Cardinaud C, Gaboriau F (2000) Novel linear and crosslinking polymers for nanoimprinting with high etch resistance. Microelectronic Engineering, vol 53, p 411CrossRefGoogle Scholar
  39. 255.
    Fa. Micro resist technology (2002) (Status of Nov. 2002)Google Scholar
  40. 256.
    Horstmann JT, Hilleringmann U, Goser KF (1998) Matching Analysis of Deposition Defined 50-nm MOSFETs. IEEE Trans, vol ED-45, p 299Google Scholar
  41. 257.
    Schulz H, Lyebyedyev D, Scheer HC, Pfeiffer K, Bleidiessel G, Grützner G, Ahopelto J (2000) Master replication into thermosetting polymers for nanoimprinting. J Vac Sci Technol, vol B18, p 3582Google Scholar
  42. 258.
    Jaszewski RW, Schift H, Gobrecht J, Smith P (1998) Hot embossing in polymers as a direct way to pattern resist. Microelectronic Engineering, vol 41/42, p 575CrossRefGoogle Scholar
  43. 259.
    Scheer HC, Schulz H, Hoffmann T, Sotomayor Torres CM (1998) Problems of the nanoimprinting technique for nanometer scale pattern definition. J Vac Sci Technol, vol B16, p 3917Google Scholar
  44. 260.
    Baraldi LG (1994) Heißprägen in Polymeren für die Herstellung integriert-optischer Systemkomponenten. Doktorarbeit an der ETH ZürichGoogle Scholar
  45. 261.
    Heyderman LJ, Schift H, David C, Gobrecht J, Schweizer T (2000) Flow behaviour of thin polymer films used for hot embossing lithography. Microelectronic Engineering, vol 54, p 229CrossRefGoogle Scholar
  46. 262.
    Scheer HC, Schulz H (2001) A contribution to the flow behaviour of thin polymer films during hot embossing lithography. Microelectronic Engineering, vol 56, p 311CrossRefGoogle Scholar
  47. 263.
    Srinivasan U, Houston MR, Howe RT, Maboudian R (1998) Alkyltrichlorosilare-based self-assembed monolayer films for stiction reduction in silicon micromechanics. J Microelectromechanical Systems, vol 7, p 252CrossRefGoogle Scholar
  48. 264.
    Zimmer K, Otte L, Braun A, Rudschuck S, Friedrich H, Schulz H, Scheer HC, Hoffmann T, Sotomayor Torres CM, Mehnert R, Bigl F (1999) Fabrication of 3D micro-and nanostructures by replica molding and imprinting. Proc EUSPEN, vol 1, p 534Google Scholar
  49. 265.
    Heidari B, Maximov I, Montelius L (2000) Nanoimprint at the 6 inch wafer scale. J Vac Sci Technol, vol B18, p 3557Google Scholar
  50. 266.
    Roos N, Luxbacher T, Glinsner T, Pfeiffer K, Schulz H, Scheer HC (2001) Nanoimprint lithography with a commercial 4 inch bond system for hot embossing. Proc SPIE, vol 4343, p 427CrossRefGoogle Scholar
  51. 267.
    Haisma J, Verheijen M, van der Heuvel K (1996) Mold-assisted nanolithography: A process for reliable pattern replication. J Vac Sci Technol, vol B14, p 4124Google Scholar
  52. 268.
    Colburn M, Johnson S, Stewart M, Damle S, Bailey T, Choi B, Wedlake M, Michaelson T, Sreenivasan SV, Ekerdt J, Wilson CG (1999) Step and flash imprint lithography: A new approach to high-resolution patterning. Proc SPIE, vol 3676, p 279Google Scholar
  53. 269.
    Colburn M, Grot A, Amitoso M, Choi BJ, Bailey T, Ekerdt J, Sreenivasan SV, Hollenhorst J, Wilson CG (2000) Step and flash imprint lithography for sub-100 nm patterning. SPIE Proc, vol 3997, p 453CrossRefGoogle Scholar
  54. 270.
    Kumar A, Biebuck HA, Whitesides GM (1994) Patterning self-assembled monolayers: Applications in materials science. Langmuir, vol 10, p 1498CrossRefGoogle Scholar
  55. 271.
    Xia Y, Zhao XM, Whitesides GM (1996) Pattern transfer: Self assembled monolayers as ultrathin resists. Microelectronic Engineering, vol 32, p 255CrossRefGoogle Scholar
  56. 272.
    Xia Y, Mrksich M, Kim E, Whitesides GM (1996) Microcontact printing of octadecylsiloxane on the surface of silicon dioxide and its application in microfabrication. J Am Chem Soc, vol 117, p 9576CrossRefGoogle Scholar
  57. 273.
    Xia Y, Qin D, Whitesides GM (1996) Microcontact printing with a cylindrical rolling stamp: A practical step toward automatic manufacturing of patterns with submicrometer sized features. Advanced Materials, vol 8, p 1015CrossRefGoogle Scholar
  58. 274.
    Schmid H, Michel B (2000) Siloxane polymers for high-resolution, high-accuracy soft lithography. Macromolecules, vol 33, p 3042CrossRefGoogle Scholar
  59. 275.
    Firma EVGroup, Austria (Status of Nov. 2002) Firma Obducat, Sweden (Status of Nov. 2002)Google Scholar
  60. 276.
    Heidari B, Maximov I, Sarwe EL, Montelius L (1999) Large scale nanolithography using nanoimprint lithography. J Vac Sci Technol, vol B17, p 2261Google Scholar
  61. 277.
    Haatainen T, Ahopelto J, Grützner G, Fink M, Pfeiffer K (2000) Step & stamp imprint lithography using a commercial flip chip bonder. SPIE Proc, vol 3997, p 874CrossRefGoogle Scholar
  62. 278.
    Montelius L, Heidari B, Graczyk M, Maximov I, Sarwe EL, Ling TG (2000) Nanoimprint and UV-lithography: Mix & match process for fabrication of interdigitated nanobiosensors. Microelectronic Engineering, vol 53, p 521CrossRefGoogle Scholar
  63. 279.
    Reuther F, Pfeiffer K, Fink M, Grützner G, Schulz H, Scheer HC (2001) Multistep profiles by mix and match of nanoimprint and UV lithography. Microelectronic Engineering, vol 57–58, p 381Google Scholar
  64. 280.
    Xia Y, Whitesides GM (1998) Soft lithography. Angew Chem Int Ed, vol 37, p 550CrossRefGoogle Scholar
  65. 281.
    Eigler DM, Schweizer EK (1990) Positioning single atoms with a scanning tunneling microscope. Nature, vol 344, p 524CrossRefGoogle Scholar
  66. 282.
    Tan W, Kopelman R (2000) Nanoscopic Optical Sensors and Probes. In: Nalwa HS (ed) Handbook of Nanostructured Materials and Nanotechnology, vol 4, Academic Press, New YorkGoogle Scholar
  67. 283.
    Betzig E, Trautmann JK (1992) Near-Field Optics: Microscopy, Spectroscopy, and Surface Modification Beyond the Diffraction Limit. Science, vol 257, p 189Google Scholar
  68. 284.
    Trautman JK, Macklin JJ, Brus LE, Betzig E (1994) Near-field spectroscopy of single molecules at room temperature. Nature, vol 369, p 40CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Personalised recommendations