Selected Solid States with Nanocrystalline Structures


Nuclear Magnetic Resonance Nanocrystalline Structure Solid State Nuclear Magnetic Resonance Zeolite Structure Deposition Pressure 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 121.
    Grabosch, G (2000) Herstellung und Charakterisierung von PECVD abgeschiedenem mikrokristallinem Silizium. Dissertation am Fachbereich Elektrotechnik der FernUniversität Hagen.Google Scholar
  2. 122.
    Hattori Y, Kruangam D, Katoh K, Nitta Y, Okamoto H, Hamakawa Y (1987) High-Conductive Wide Band Gap p-Type a-SiC:H Prepared by ECR CVD and Its Application to High Efficiency a-Si Basis Solar Cells. Proc 19th IEEE Photovolt Spec Conf, p 689Google Scholar
  3. 123.
    Konaga M, Takai H, Kim WY, Takahashi K (1985) Preparation of Amorphous Silicon and Related Semiconductors by Photochemical Vapor Deposition and Their Application to Solar Cells. Proc 19th IEEE Photovolt Spec Conf, p 1372Google Scholar
  4. 124.
    Kuwanu Y, Tsuda S (1998) High Quality p-Type a-SiC Film Doped with B(CH3)3 and its Application to a-Si Solar Cells. Mat Res Soc Symp Proc, vol 118, p 557, Mat Res SocGoogle Scholar
  5. 125.
    Guha S, Ovshinsky SR (1988) P and N-Type Microcrystalline Semiconductor Alloy Material Including Band Gap Widening Elements, Devices Utilizing Same. U.S. Patent No. 4,775,425Google Scholar
  6. 126.
    Dusane SR (1992) Gap states in hydrogenated microcrystalline silicon by glow discharge technique. J Appl Phys, vol 72, p 2923CrossRefGoogle Scholar
  7. 127.
    Lucovsky G, Wang C, Chen YL (1992) Barrier-limited transport in μc-Si and μc-SiC thin Films prepared by remote plasma-enhanced chemical vapor deposition. J Vac Sci Technol A, vol 10, p 2025CrossRefGoogle Scholar
  8. 128.
    Shimizu I, Hanna HI, Shirai H (1990) Control of Chemical Reactions for Growth of Crystalline Si at Low Substrate Temperature. Mat Res Soc Symp Proc, vol 164, p 195, Mat Res SocGoogle Scholar
  9. 129.
    Komiya T, Kamo A, Kujirai H, Shimizu I, Hanna JI (1990) Preparation of Crystalline Si Thin Films by Spontaneous Chemical Deposistion. Mat Res Soc Symp Proc, vol 164, p 63, Mat Res SocGoogle Scholar
  10. 130.
    Tonouchi M, Moriyama F, Miyasato T (1990) Characterization of μc-Si:H Films Prepared by H2 Sputtering. Jap J Appl Phys, vol 29, p L385CrossRefGoogle Scholar
  11. 131.
    Feng GF, Katiyar M, Yang YH, Abelson JR, Maley N (1992) Growth and Structure of Microcrystalline Silicon by Reactive DC Magnetron Sputtering. Mat Res Soc Symp Proc, vol 258, p 179, Mat Res SocGoogle Scholar
  12. 132.
    Chaudhuri P, Ray S, Barua AK (1984) The Effect of Mixing Hydrogen with Silane on the Electronic and Optical Properties of Hydrogenated Amorphous Silicon Films. Thin Solid Films, vol 113, p 261CrossRefGoogle Scholar
  13. 133.
    Shirafuji J, Nagata S, Kuwagaki M (1985) Effect of hydrogen dilution of silane on optoelectronic properties in glow discharged hydrogenated silicon films. J Appl Phys, vol 58, p 3661CrossRefGoogle Scholar
  14. 134.
    Meiling H, van den Boogard MJ, Schropp RE, Bezemer J, van der Weg WF (1990) Hydrogen Dilution of Silane: Correlation between the Structure and Optical Band Gap in GD a-Si:H Films. Mat Res Soc Symp Proc, vol 192, p 645, Mat Res SocGoogle Scholar
  15. 135.
    Hollingsworth RE, Bhat PK, Madan A (1987) Microcrystalline and Wide Band Gap p+ Window Layers for a-Si p-i-n Solar Cells. J Non-Cryst Sol, vol 97 & 98, p 309Google Scholar
  16. 136.
    Kroll U, Meier J, Torres P, Pohl J, Shah A (1998) From amorphous to microcrystalline silicon films prepared by hydrogen dilution using VHF (70 MHz) GD technique. J Non-Cryst Sol, vol 227–230, p 69Google Scholar
  17. 137.
    Tsai CC, Thompson R, Doland C, Ponce FA, Anderson GB, Wacker B (1998) Transition from Amorphous to Crystalline Silicon: effect of Hydrogen on Film Growth. Mat Res Soc Symp Proc, vol 118, p 49, Mat Res SocGoogle Scholar
  18. 138.
    Schropp RE, Zeman M (1998) Amorphous and Microcrystalline Silicon Solar Cells: Modelling, Materials and Devices Technology. Kluwer Acad. Publ, Boston (MA)Google Scholar
  19. 139.
    Matz W. Pers comm.Google Scholar
  20. 140.
    Klug HP, Alexander LE (1974) X-Ray Diffraction Procedures. Wiley & Sons, 2nd ed, New YorkGoogle Scholar
  21. 141.
    Borchert D, Hussein R, Fahrner WR (1999) A Simple (n) a-Si / (p) c-Si Heterojunction Cell Process Yielding Conversion Efficiencies up to 15.3 %. 11th Int Photovolt Sci Eng Conf, Sapporo, JapanGoogle Scholar
  22. 142.
    Kawamoto K, Nakai T, Bab T, Taguchi M, Sakata H, Tsuge S, Uchihashi K, Tanaka M, Kiyama S (2001) A High Efficiency HIT Solar Cell (21.0 % ≈ 100 cm2) with Excellent Interface Properties. 12th Int Photovolt Sci Eng Conf, Jeju, KoreaGoogle Scholar
  23. 143.
    Barrer RM (1978) Zeolites and Clay Minerals as Sorbents and Molecular Sieves. Academic Press, LondonGoogle Scholar
  24. 144.
    Derouane EG, Lemos F, Naccache C, Ribeiro FR (1992) Zeolite Microporous Solids: Synthesis, Structure, and Reactivity. Kluwer Academic Publishers, DordrechtGoogle Scholar
  25. 145.
    Zhen S, Seff K (2000) Structures of organic sorption complexes of zeolites. Microporous and Mesoporous Materials, vol 39, p 1CrossRefGoogle Scholar
  26. 146.
    Caro J, Noack M, Kolsch P, Schafer R (2000) Zeolite membranes — state of their development and perspective. Microporous and Mesoporous Materials, vol 38, p 3CrossRefGoogle Scholar
  27. 147.
    Pauling L (1976) Die Natur der chemischen Bindung. Verlag Chemie, WeinheimGoogle Scholar
  28. 148.
    Pauling L (1988) General Chemistry. Dover Publications Inc, New YorkGoogle Scholar
  29. 149.
    Meier WM, Olson DH, Baerlocher C (1996) Atlas of Zeolite Structure Types. Zeolites, vol 17, p 1Google Scholar
  30. 150.
    IZA Structure Commission. Database of Zeolite Structures. (Status of Nov. 2002)Google Scholar
  31. 151.
    Robson H (1998) Verified Synthesis of Zeolite Materials. Microporous Materials, vol 22, p 495CrossRefGoogle Scholar
  32. 152.
    Barrer RM (1981) Hydrothermal Chemistry of Zeolites. Academic Press, LondonGoogle Scholar
  33. 153.
    Cheetham AK, Férey G, Loiseau T (1999) Anorganische Materialien mit offenen Gerüsten. Ang Chem, vol 111, p 3466CrossRefGoogle Scholar
  34. 154.
    Charnell JF (1971) Gel Growth of Large Crystals of Sodium and Sodium X Zeolites. J Cryst Growth, vol 8, p 291CrossRefGoogle Scholar
  35. 155.
    Shimizu S, Hamada H (1999) Synthese riesiger Zeolithkristalle durch langsame Auflösung kompakter Ausgangsmaterialien. Angew Chem, vol 111, p 2891CrossRefGoogle Scholar
  36. 156.
    McCusker LB (1998) Product characterization by X-ray powder diffraction. In: Robson H (ed) Verified Synthesis of Zeolite Materials. Microporous Materials, vol 22, p 527Google Scholar
  37. 157.
    Jansen K (1998) Characterization of zeolites by scanning electron microscopy. In: Robson H (ed) Verified Synthesis of Zeolite Materials. Microporous Materials, vol 22, p 531Google Scholar
  38. 158.
    Stöcker M (1998) Product characterization by nuclear magnetic resonance. In: Robson H (ed) Verified Synthesis of Zeolite Materials. Microporous Materials, vol 22, p 533Google Scholar
  39. 159.
    Kuzmany H (1998) Solid-State Spectroscopy. Springer, BerlinGoogle Scholar
  40. 160.
    Ruthven DM (1998) Characterization of zeolites by sorption capacity measurements. In: Robson H (ed) Verified Synthesis of Zeolite Materials. Microporous Materials, vol 22, p 537Google Scholar
  41. 161.
    Dyer A (1998) Ion-exchange capacity. In: Robson H (ed) Verified Synthesis of Zeolite Materials. Microporous Materials, vol 22, p 543Google Scholar
  42. 162.
    Karge HG (1998) Characterization by infrared spectroscopy. In: Robson H (ed) Verified Synthesis of Zeolite Materials. Microporous Materials, vol 22, p 547Google Scholar
  43. 163.
    Flanigen EM, Sands LB (1998) Advances in Chemistry Series 101. American Chemical Society, Washington DC, p 201Google Scholar
  44. 164.
    Knops-Gerrits PP, De Vos DE, Feijen EJ, Jacobs PA (1997) Raman spectroscopy of zeolites. Microporous Materials, vol 8, p 3CrossRefGoogle Scholar
  45. 165.
    Breck DW (1974) Zeolithe Molecular Sieves: Structure, Chemistry and Use. Wiley, New YorkGoogle Scholar
  46. 166.
    Schmid G (1994) Clusters and Colloids. Wiley-VCH, WeinheimGoogle Scholar
  47. 167.
    Gonsalves KE, Rangarajan, Wang J (2000) Chemical Synthesis of Nanostructured Metals, Metal Alloys, and Semiconductors. In: Nalwa HS (ed) Handbook of Nanostructured Materials and Nanotechnology. Academic Press, LondonGoogle Scholar
  48. 168.
    Simon U, Franke ME (2000) Electrical Properties of nanoscaled host/ guest compounds. Microporous and Mesoporous Materials, vol 41, p 1CrossRefGoogle Scholar
  49. 169.
    Exner D, Jäger NI, Kleine A, Schulz-Ekloff G (1998) Reduction-Agglomeration Model for Metal Dispersion in Platinum-exchanged NaX Zeolite. J Chem Faraday Trans, vol 84, p 4097CrossRefGoogle Scholar
  50. 170.
    Ozin GA, Kuperman A, Stein A (1989) Advanced Zeolite Material Science. Angew Chem Intern Ed Engl, vol 28, p 359CrossRefGoogle Scholar
  51. 171.
    Wang Y, Herron N, Mahler W, Suna H (1989) Linear-and nonlinear-optical properties of semiconductor clusters. J Opt Soc Am, vol B6, p 808Google Scholar
  52. 172.
    Blatter F, Blazey KW (1990) Conduction-electron resonance of Na-Cs alloys in zeolite Y. IBM Research Report, ZürichGoogle Scholar
  53. 173.
    Haug K, Srdanov VI, Stucky GD, Metiu H (1992) The absorption spectrum of an electron solvated in sodalite. J Chem Phys, vol 96, p 3495CrossRefGoogle Scholar
  54. 174.
    Ozin GA (1992) Nanochemistry: Synthesis in Diminishing Dimensions. Adv Mater, vol 10, p 612CrossRefGoogle Scholar
  55. 175.
    Ozin GA, Özkar S (1992) Zeolites: A Coordination Chemistry View of Metal-Ligand Bonding in Zeolite Guest-Host Inclusion Compounds. Chem Mater, vol 4, p 551CrossRefGoogle Scholar
  56. 176.
    Edwards PP, Woodall LJ, Anderson PA, Armstrong AR, Slaski M (1993) On the Possibility of an Insulator-Metal Transition in Alkali Metal Doped Zeolites. Chem Soc Rev, vol 22, p 305CrossRefGoogle Scholar
  57. 177.
    Bowes CL, Ozin GA (1998) Tin sulfide clusters in zeolite A, Sn4S6-Y. J Mat Chem, vol 8, p 1281CrossRefGoogle Scholar
  58. 178.
    Herron N (1986) A Cobalt Oxygen Carrier in Zeolite Y. A Molecular ‘ship in a Bottle’. Inorg Chem, vol 25, p 4714CrossRefGoogle Scholar
  59. 179.
    Herron N, Wang Y, Eddy M, Stucky GD, Cox DE, Bein T, Moller K (1989) Structure and Optical Properties of CdS Superclusters in Zeolite Hosts. J Am Chem Soc, vol 111, p 530CrossRefGoogle Scholar
  60. 180.
    Hirono T, Kawana A, Yamada T (1987) Photoinduced effects in a mordenite-AgI inclusion compound. J Appl Phys, vol 62, p 1984CrossRefGoogle Scholar
  61. 181.
    Nozue Y, Tang ZK, Goto T (1990) Excitions in PbI2 Clusters Incorporated into Zeolite Cages. Solid State Commun, vol 73, p 31CrossRefGoogle Scholar
  62. 182.
    Liu X, Thomas JK (1989) Formation and Photophysical Properties of CdS in Zeolites with Cages and Channels. Langmuir, vol 5, p 58CrossRefGoogle Scholar
  63. 183.
    Schwenn HJ, Wark M, Schulz-Ekloff G, Wiggers H, Simon U (1997) Electrical and optical properties of zeolite Y supported SnO2 nanoparticles. Colloid Polym Sci, vol 275, p 91CrossRefGoogle Scholar
  64. 184.
    Wark M, Schwenn HJ, Schulz-Ekloff G, Jäger NI (1992) Structure, Photoabsorption and Reversibles Reactivity of Faujasite-Supported Dispersions of CdO and SnO2. Ber Bunsenges Phys Chem, vol 96, p 1727Google Scholar
  65. 185.
    Brus LE (1986) Electronic wave functions in semiconductor clusters: experiment and theory. J Chem Phys, vol 90, p 2555CrossRefGoogle Scholar
  66. 186.
    Anderson PA, Bell RG, Catlow SR, Chang FL, Dent AJ, Edwards PP, Gameson I, Hussain I, Porch A, Thomas JM (1996) Matrix-Bound Nanochemical Possibilities. Chem Mater, vol 8, p 2114CrossRefGoogle Scholar
  67. 187.
    Kelly MJ (1995) A Model Electronic-Structure for Metal Intercalated Zeolites. J Phys Condensed Matter, vol 7, p 5507CrossRefGoogle Scholar
  68. 188.
    Anderson PA, Edwards PP (1992) A Magnetic Resonance Study of the Inclusion Compounds of Sodium in Zeolites: Beyond the Metal Particles. J Am Chem Soc, vol 114, p 10608CrossRefGoogle Scholar
  69. 189.
    Armstrong AR, Anderson PA, Edwards PP (1994) The Composition Dependence of the Structure of Potassium-Loaded Zeolite-A — Evolution of a Potasium Superlatice. J Solid State Chem, vol 111, p 178CrossRefGoogle Scholar
  70. 190.
    Anderson PA, Armstrong AR, Edwards PP (1994) Ionization and Delocalization in Potassium Zeolite-L — A Combined Neutron-Diffraction and Electron-Spin-Resonance Study. Angew Chem Intern Ed. Engl, vol 33, p 641CrossRefGoogle Scholar
  71. 191.
    Pan M (1996) High Resolution Electron Microscopy in Zeolites. Micron, vol 7, p 219CrossRefGoogle Scholar
  72. 192.
    Gallezot P (1979) The state and catalytic properties properties of platimum and palladium in faujasite-type zeolites. Catal Rev Sci Eng, vol 20, p 121Google Scholar
  73. 193.
    Homeyer ST, Sachtler WM (1989) Elementary steps in the formation of highly dispersed palladium in NaY. J Catal, vol 118, p 266CrossRefGoogle Scholar
  74. 194.
    Stein A, Ozin GA (1993) Sodalite Superlattices: from molecules to clusters to expanded insulators, semiconductors and metals. In: von Ballmoos R, Higgins JB, Treacy MM (eds) Proc 9th Intern Zeolites Conf, vol I, p 93, Butterworth-HeinemannGoogle Scholar
  75. 195.
    Aparisi A, Fornés V, Márquez F, Moreno R, López C, Meseguer F (1996) Synthesis and optical properties of CdS and Ge clusters in zeolite cages. Solid State Electronics, vol 40, p 641CrossRefGoogle Scholar
  76. 196.
    Deson J, Lalo C, Gédéon A, Vasseur F, Fraissard J (1996) Laser-induced luminescence in reduced copper-exchanged Y zeolite. Chemical Physics Letters, vol 258, p 381CrossRefGoogle Scholar
  77. 197.
    Chen W, Wang Z, Lin L, Lin J, Su M (1997) Photostimulated luminescence of silver clusters in zeolite-Y. Physics Letters, vol A 232, p 391Google Scholar
  78. 198.
    Chen W, Wang Z, Lin Z, Lin L, Fang K, Xu Y, Su M, Lin J (1998) Photostimulated luminescence of AgI clusters in zeolite-Y. J Appl Phys, vol 83, p 3811CrossRefGoogle Scholar
  79. 199.
    Armand P, Saboungi ML, Price DL, Iton L, Cramer C, Grimsditch M (1997) Nanoclusters in Zeolite. Phys Rev Lett, vol 79, p 2061CrossRefGoogle Scholar
  80. 200.
    Mitsa V, Fejsa I (1997) Raman spectra of chalcogenides implanted into pores of zeolites. J Molecular Structure, vol 410–411, p 263Google Scholar
  81. 201.
    Price GL, Kanazirev V (1997) Guest ordering in zeolite hosts. Zeolites, vol 18, p 33CrossRefGoogle Scholar
  82. 202.
    Caro J, Noack M, Kolsch P, Schafer R (2000) Zeolite membranes — state of their development and perspective. Microporous and Mesoporous Materials, vol 38, p 3CrossRefGoogle Scholar
  83. 203.
    Walcarius A (1999) Zeolite-modified electrodes in electrochemical chemistry. Analytica Chimica Acta, vol 384, p 1CrossRefGoogle Scholar
  84. 204.
    Weitkamp J, Fritz M, Ernst S (1995) Zeolites as media for hydrogen storage. Int J Hydrogen Energy, vol 20, p 967CrossRefGoogle Scholar
  85. 205.
    Kynast U, Weiler V (1994) Efficient luminescence from zeolites. Adv Mater, vol 6, p 937CrossRefGoogle Scholar
  86. 206.
    Kelly MJ (1993) The poor prospects for one-dimensional devices. Int J Electron, vol 75, p 27Google Scholar
  87. 207.
    Videnova-Adrabinska V (1995) The hydrogen bond as a design element in crystal engineering. Two-and three-dimensional building blocks of crystal architecture. J Molecular Structures, vol 374, p 199Google Scholar
  88. 208.
    Edwards PP, Anderson PA, Woodall LJ, Porch A, Armstrong AR (1996) Can we synthesise a dense bundle of quasi one-dimensional metallic wires? Mater Sci Engineer, vol A 217/218, p 198CrossRefGoogle Scholar
  89. 209.
    Anderson PA, Armstrong AR, Edwards PP (1994) Ionisierung und Elektronendelokalisierung in Kalium-Zeolith-L: eine kombinierte Neutronenbeugungs-und ESR-Studie. Angew Chem, vol 106, p 669Google Scholar
  90. 210.
    Rabo JA, Angell CL, Kasai PH, Schomaker V (1996) Studies of Cations in Zeolite: Adsorption of Carbon Monoxide; Formation of Ni ions and Na3+4 centres. Disc Faraday Soc, vol 41, p 328CrossRefGoogle Scholar
  91. 211.
    Edwards PP, Harrison MR, Klinowski J, Ramdas S, Thomas JM, Johnson DC, Page CJ (1984) Ionic and Metallic Clusters in Zeolite. J Chem Soc, Chem Commun, p 982Google Scholar
  92. 212.
    Harrison MR, Edwards PP, Klinowski J, Thomas JM, Johnson DC, Page CJ (1984) Ionic and Metallic Clusters of the Alkali Metals in Zeolite Y. J Solid State Chem, vol 54, p 330CrossRefGoogle Scholar
  93. 213.
    Anderson PA, Singer RJ, Edwards PP (1991) A New Potassium Cluster in Zeolites X and A. J Chem Soc, Chem Commun, p 914Google Scholar
  94. 214.
    Anderson PA, Edwards PP (1992) A Magnetic Resonance Study in the Inclusion Compounds of Sodium in Zeolites: Beyond the Metal Particle Model. J Am Chem Soc, vol 114, p 10608CrossRefGoogle Scholar
  95. 215.
    Armstrong AR, Anderson PA, Woodall LJ, Edwards PP (1994) Structure and Electronic Properties of Cesium-Loaded Zeolite A. J Phys Chem, vol 98, p 9279CrossRefGoogle Scholar
  96. 216.
    Anderson PA, Edwards PP (1994) Reassessment of the conduction-electron spin resonance of alkali metals in zeolites. Phys Rev, vol B50, p 7155Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Personalised recommendations