Advertisement

Role of Microorganisms in Wear Down of Rocks and Minerals

  • Anna A. Gorbushina
  • W.E. Krumbein
Part of the Soil Biology book series (SOILBIOL, volume 3)

Keywords

Fractal Dimension Extracellular Polymeric Substance Fossil Fuel Burning Hurst Exponent Reactive Surface Area 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aardema BW, Lorenz M, Krumbein WE (1983) Protection of sediment adsorbed transforming DNA against enzymatic inactivation. Appl Environ Microbiol 46:417–420Google Scholar
  2. Anderson DL (1984) The Earth as a planet: paradigms and paradoxes. Science 223:347–354Google Scholar
  3. Arrhenius SA (1896) On the influence of carbonic acid in the air upon the temperature of the ground. Philos Mag 41:237–276Google Scholar
  4. Bachmann E (1890) Die Beziehung der Kalkflechten zu ihrem Substrat. Ber Dtsch Bot Ges 8:141–145Google Scholar
  5. Bachmann E (1916) Ein kalklösender Pilz. Ber Dtsch Bot Ges 34:528–539Google Scholar
  6. Banfield JF, Barker WW, Welch SA, Taunton, A. (1999) Biological impact on mineral dissolution: Application of the lichen model to understanding mineral weathering in the rhizosphere. Proc Nat Acad Sci USA 96: 3403–3411CrossRefGoogle Scholar
  7. Barnola JM, Raynaud D, Korotkevich YS, Lorius C (1987) Vostok ice core provides a 160,000-year record of atmospheric CO2. Nature 329: 408–414CrossRefGoogle Scholar
  8. Berner RA (1992) Weathering, plants, and long-term carbon cycle. Geochim Cosmochim Acta 56:3225–3231Google Scholar
  9. Boden TA, Kanciruk P, Farrel MP (1990) Trends’ 90 — a compendium of data on global change. Oak Ridge, Tennessee, 257 ppGoogle Scholar
  10. Buffon GL (1749-1804) Histoire naturelle, générale et particulière, 44 volumes. Paris Imprimerie royale, after the revolution, Plassan, ParisGoogle Scholar
  11. Callendar GS (1938) The artificial production of carbon dioxide and its influence on temperature. Q J R Metereol Soc 64:223–240Google Scholar
  12. Callendar GS (1939) The composition of the atmosphere through the ages. Metereol Mag 74:33–39Google Scholar
  13. Callendar GS (1958) On the measurement of carbon dioxide in the atmosphere. Tellus 10:241–248CrossRefGoogle Scholar
  14. D’Arcy Thompson W (1917, 1961) On growth and form. Cambridge Univ Press, Cambridge, 346 ppGoogle Scholar
  15. Degens E (1989) Perspectives on biogeochemistry. Springer, Berlin Heidelberg New York, 423 ppGoogle Scholar
  16. Dietler G, Zhang YC (1992) Fractal aspects of the Swiss landscape. Physica A 191:213–219CrossRefGoogle Scholar
  17. Dornieden T, Gorbushina AA, Krumbein WE (1997) Änderungen der physikalischen Eigenschaften von Marmor durch Pilzbewuchs. Int J Restor Build Monu 3:441–456Google Scholar
  18. Dornieden T, Gorbushina AA, Krumbein WE (2000) Biodecay of mural paintings and stone monuments as a space/time related ecological situation — an evaluation of a series of studies. Int Biodeter Biodegrad 46:261–270Google Scholar
  19. Etienne S, Dupont J (2002) Fungal weathering of basaltic rocks in a cold oceanic environment (Iceland): comparison between experimental and field observations. Earth Surface Proc Landforms 27:737–748Google Scholar
  20. Gadd GM (1999) Fungal production of citric and oxalic acid. In: Poole RK (ed) Advances in microbial physiology. Academic Press, New York, pp 48–92Google Scholar
  21. Gehrmann C, Krumbein WE, Petersen K (1988) Lichen weathering activities on mineral and rock surfaces. Stud Geobotan 8:33–45Google Scholar
  22. Golubic S, Krumbein WE, Schneider J (1979) The carbon cycle. In: Trudinger PA, Swaine DJ (eds) Biogeochemical cycling of mineral-forming elements. Elsevier, Amsterdam, pp 29–45Google Scholar
  23. Gonzalez-del Valle M, Dorronsoro C, Irastorza A, Duenas M, Velasco S, Ibarburu I, Saiz-Jimenez C (2003) Microbial communities in black crusts. In: Saiz-Jimenez C (ed) Molecular biology and cultural heritage. Balkema, Lisse, pp 219–223Google Scholar
  24. Gorbushina AA, Krumbein WE (1999) The poikilotrophic micro-organism and its environment — microbial strategies of establishment, growth and survival. In: Seckbach J (ed) Enigmatic micro-organisms and life in extreme environments. Kluwer, Dordrecht, pp 175–185Google Scholar
  25. Gorbushina AA, Krumbein WE (2000) Subaerial biofilms and their effects on soil and rock. In: Riding RE, Awramik SM (eds) Microbial sediments. Springer, Berlin Heidelberg New York, pp 161–170Google Scholar
  26. Gorbushina AA, Krumbein WE, Vlasov D (1996) Biocarst cycles on monument surfaces. In: Pancella R (ed) Preservation and restoration of cultural heritage. Proceedings of the 1995 LPC Congress. EPFL, Lausanne, pp 319–332Google Scholar
  27. Gorbushina AA, Boettcher M, Brumsack HJ, Krumbein WE, Vendrell-Saz M (2001) Biogenic forsterite and opal as a product of biodeterioration and lichen stromatolite formation in table mountain systems (tepuis) of Venezuela. Geomicrobiol J 18:117–132Google Scholar
  28. Gorbushina AA, Diakumaku E, Müller L, Krumbein WE (2003a) Biocide treatment of rock and mural paintings. Problems of application, molecular techniques of control and environmental hazards. In: Saiz-Jimenez C (ed) Molecular biology and cultural heritage. Swets and Zeitlinger, Lisse, pp 61–72Google Scholar
  29. Gorbushina AA, Whitehead K, Dornieden T, Niesse A, Schulte A, Hedges J (2003b) Black fungal colonies as units of survival: hyphal mycosporines synthesized by rock dwelling microcolonial fungi. Can J Bot 81: 131–138CrossRefGoogle Scholar
  30. Gorbushina AA, Brehm U, Mottershead D (2004) The role of microorganisms and biofilms in quartz weathering. Paleoecol Paleoclimatol Paleooceanograph (in press)Google Scholar
  31. Gumilev L (1990) Ethnogenesis and the biosphere. Progress Publ, Moskwa, 382 ppGoogle Scholar
  32. Hansen JP, Skjeltorp AT (1988) Fractal pore space and rock permeability implications. Physical Rev B 38:2635–2638Google Scholar
  33. Herder JG (1784) Ideen zur Philosophie der Geschichte der Menschheit. Hempel, BerlinGoogle Scholar
  34. Hutton J (1795) Theory of the earth. Edinburgh, I. 620 pp, II. 567 ppGoogle Scholar
  35. Isacenko B (1936) Sur la corrosion du béton. Dokl Akad Nauk SSSR 2:288–289Google Scholar
  36. Jongmans AG, van Breemen N, Lundström U, van Hees PAW, Finlay RD, Srinivasan M, Unestam T, Giesler R, Melkerud PA, Olsson M (1997) Rock eating fungi. Nature 389:682–683CrossRefGoogle Scholar
  37. Kant I (1747) Gedanken von der wahren Schätzung der lebendigen Kräfte und Beurtheilung der Beweise, deren sich Herr von Leibniz und andere Mechaniker in der Streitsache bedient haben, nebst einigen vorhergehenden Betrachtungen, welche die Kraft der Körper überhaupt betreffen. In: Königl. Preuss Akad d Wiss (Hrsg) Kants gesammelte Schriften, Bd 1. Reimer, Berlin, 1910, pp 1–181Google Scholar
  38. Kant I (1754) Untersuchung der Frage, ob die Erde in ihrer Umdrehung um die Achse, wodurch sie die Abwechslung des Tages und der Nacht hervorbringt, einige Veränderung seit den ersten Zeiten ihres Ursprungs erlitten habe und woraus man sich ihrer versichern könne, welche von der königl. Akad d Wissenschaften zu Berlin zum Preise für das laufende Jahr aufgegeben worden. In: Königl Preuss Akad d Wiss (Hrsg) Kants gesammelte Schriften, Bd 1. Reimer, Berlin, 1910, pp 183–213Google Scholar
  39. Kant I (1755) Allgemeine Naturgeschichte und Theorie des Himmels. oder der Versuch von der Verfassung und dem mechanischen Ursprunge des ganzen Weltgebäudes nach Newtonischen Grundsätzen abgehandelt. Kants vorkritische Schriften, 1968. Suhrkamp, Frankfurt/Main, pp 227–400Google Scholar
  40. Kant I (1756a) Geschichte und Naturbeschreibung der merkwürdigsten Vorfälle des Erdbebens, welches am Ende des 1755sten Jahres einen großen Theil der Erde erschüttert hat. In: Königl Preuss Akad d Wiss (Hrsg) Kants gesammelte Schriften, Bd 1. Reimer, Berlin, 1910, pp 431–461Google Scholar
  41. Kant I (1756b) Von den Ursachen der Erderschütterungen bei Gelegenheit des Unglücks, welches die westlichen Länder von Europa gegen das Ende des vorigen Jahres betroffen hat. In: Königl Preuss Akad d Wiss (Hrsg) Kants gesammelte Schriften, Bd 1. Reimer, Berlin, 1910, pp 417–427Google Scholar
  42. Keller WD (1957) The principles of chemical weathering. Lucas Brothers, Columbia, Missouri, 111 ppGoogle Scholar
  43. Krohn CE (1988) Fractal measurements of sandstones, shales, and carbonates. J Geophys Res 93B4:3297–3305Google Scholar
  44. Krumbein WE (1966) Zur Frage der Gesteinsverwitterung (Über geochemische und mikrobiologische Bereiche der exogenen Dynamik) PhD Thesis, Würzburg, 103 ppGoogle Scholar
  45. Krumbein WE (1969) Über den Einfluß der Mikroflora auf die exogene Dynamik (Verwitterung und Krustenbildung). Geol Rundsch 58:333–363Google Scholar
  46. Krumbein WE (1972) Rôle des microorganismes dans la genèse, la diagenèse et la dégradation des roches en place. Rev Ecol Biol Sol 9:283–319Google Scholar
  47. Krumbein WE (1983) Introduction. In: Krumbein WE (ed) Microbial geochemistry. Blackwell, Oxford, pp 1–4Google Scholar
  48. Krumbein WE (1988) Biotransfer in monuments — a sociobiological study. Durabil Building Mater 5:359–382Google Scholar
  49. Krumbein WE (1990) Der Atem Cäsars. Mitt Geol Paläontol Inst Hamburg 69:267–301Google Scholar
  50. Krumbein WE (1993) Microbial biogeomorphogenesis — an appraisal of Immanuel Kant. In: Guerrero R, Pedros-Alio C (eds) Trends in microbial ecology. Spanish Soc Microbiol, Barcelona, pp 483–488Google Scholar
  51. Krumbein WE (1996) Geophysiology and parahistology of the interactions of organisms with the environment. Mar Ecol 17:1–21Google Scholar
  52. Krumbein WE (1998) Mikrobenbefall und Steinzerstörung: autotroph oder heterotroph? chemisch oder physikalisch? Strategien der Verhinderung und Behebung — eine Bilanz. In: Snethlage R (ed) Denkmalpflege und Naturwissenschaft. Natursteinkonservierung II. Fraunhofer IRB, Stuttgart, pp 173–205Google Scholar
  53. Krumbein WE, Jens K (1981) Biogenic rock varnishes of the Negev Desert (Israel) an ecological study of iron and manganese transformation by cyanobacteria and fungi. Oecologia 50:25–38CrossRefGoogle Scholar
  54. Krumbein WE, Dyer B (1985) This planet is alive — weathering and biology, a multi-faceted problem. In: Drever JI (ed) The chemistry of weathering, vol 149. Reidel, Dordrecht, pp 143–160Google Scholar
  55. Krumbein WE, Schellnhuber HJ (1990) Geophysiology of carbonates as a function of bioplanets. In: Ittekott VI, Kempe S, Michaelis W, Spitzy A (eds) Facets of modern biogeochemistry, chap 2. Springer, Berlin Heidelberg New York, pp 5–22Google Scholar
  56. Krumbein WE, Schellnhuber HJ (1992) Geophysiology of mineral deposits — a model for a biological driving force of global changes through Earth history. Terra Nova 4:351–362Google Scholar
  57. Krumbein WE, Swart P (1983) The microbial carbon cycle. In: Krumbein WE (ed) Microbial geochemistry. Blackwell, Oxford, pp 5–62Google Scholar
  58. Krumbein WE, Urzì CE (1993) Biodeterioration processes of monuments as a part of (manmade?) global climate change. In: Thiel MJ (ed) Conservation of stone and other materials. E & FN Spon, Chapman and Hall, London, pp 558–564Google Scholar
  59. Krumbein WE, Gorbushina AA (1996) Organic pollution and rock decay. In: Pancella R (ed) Preservation and restoration of cultural heritage. Proceedings of the 1995 LPC Congress. EPFL, Lausanne, pp 277–284Google Scholar
  60. Krumbein WE, Brehm U, Gerdes G, Gorbushina AA, Levit G, Palinska KA (2003a) Biofilm, Biodictyon, Biomat — Microbialites, oolites, stromatolites — geophysiology, global mechanism, parahistology. In: Krumbein WE, Paterson DM, Zavarzin GA (eds) Fossil and recent biofilms, a natural history of life on earth. Kluwer, Dordrecht, 495 ppGoogle Scholar
  61. Krumbein WE, Paterson DM, Zavarzin GA (eds) (2003b) Fossil and recent biofilms, a natural history of life on earth. Kluwer, Dordrecht, 495 ppGoogle Scholar
  62. Levit G, Krumbein WE (2001) Eine vergessene Seite der Ökologiegeschichte: die Biosphäre als Morphoprozess in der Theorie von V. N. Beklemishev (1890-1962). Ber Gesch Theor Ökol 7:199–214Google Scholar
  63. Leyval C, Berthelin J (1991) Weathering of mica by roots and rhizospheric microorganisms of pine. Soil Sci Soc Am J 55: 1009–1016CrossRefGoogle Scholar
  64. Li YH (1972) Geochemical mass balance among lithosphere, hydrosphere, and atmosphere. Am J Sci 272:119–137CrossRefGoogle Scholar
  65. Lovelock JE (1979) Gaia — a new look at life on earth. Oxford Univ Press, Oxford, 157 ppGoogle Scholar
  66. Mandelbrot BB (1967) How long is the coast of Britain? Statistical self-similarity and fractal dimension. Science 156:636–638Google Scholar
  67. Milankovitch M (1920) Théorie mathématique des phénomènes thermiques produits par la radiation solaire. Gauthier-Villars, Paris, 339 ppGoogle Scholar
  68. Mottershead D, Gorbushina AA, Lucas G, Wright J (2003) The influence of marine salts, aspect and microbes in the weathering of sandstone in two historic structures. Building Environ 38:1193–1204Google Scholar
  69. Müntz A (1890) Sur la decomposition des roches et la formation de la terre arable. CR Acad Sci 110:1370–1372Google Scholar
  70. Paine SG, Lingood FV, Schimmer F, Thrupp TC (1933) The relation of micro-organisms to the decay of building stones. Philos Trans R Soc B 222:97–127Google Scholar
  71. Perry RS (1979) Chemistry and structure of desert varnish. Ms. Sc. Thesis, Univ Washington, SeattleGoogle Scholar
  72. Paterson D (1993) Did Tibet cool the world? New Sci 1880: 29–33Google Scholar
  73. Saiz-Jimenez C (1999) Biogeochemistry of weathering processes in monuments. Geomicrobiol J 16:27–37Google Scholar
  74. Schoeller H (1955) Géochimie des eaux souterraines. Rev Inst Fr Pétrol 1955:181–213Google Scholar
  75. Schwartzman DW, Volk T (1990) Biotic enhancement of weathering and the habitability of earth. Nature 340:457–460Google Scholar
  76. Schwartzman DW, Volk T (1991a) Biotic enhancement of weathering and surface temperatures on earth since the origin of life. Palaeoecology (Global and Planetary Change Section) 90:357–371Google Scholar
  77. Schwartzman DW, Volk T (1991b) When soil cooled the world. New Sci 51:33–36Google Scholar
  78. Sollas WJ (1880) On the action of a lichen on a limestone. Report, British Association for the Advancement of Science, 586 ppGoogle Scholar
  79. Staley JT, Palmer FE, Adams JB (1982) Microcolonial fungi: common inhabitants on desert rocks? Science 215:1093–1095Google Scholar
  80. Sterflinger K (2000) Fungi as geological agents. Geomicrobiol J 17:97–124CrossRefGoogle Scholar
  81. Sterflinger K, Krumbein WE (1997) Dematiaceous fungi as a major agent for biopitting on Mediterranean marbles and limestones. Geomicrobiol J 14:219–230CrossRefGoogle Scholar
  82. Tetsuro W (Japanese 1935, German 1992) Fudo — Wind und Erde. Der Zusammenhang zwischen Klima und Kultur. Wiss Buchgesellschaft, Darmstadt, 216 ppGoogle Scholar
  83. Turcotte DL (1989) Fractals in geology and geophysics. Pageoph 131:171–196CrossRefGoogle Scholar
  84. Vernadsky VI (1924) La géochimie. Alcan, ParisGoogle Scholar
  85. Vernadsky VI (1929) La biosphère. Alcan, Paris, 232 ppGoogle Scholar
  86. Vernadsky VI (1930) Geochemie in ausgewählten Kapiteln. Akad Verlagsgesellschaft, Leipzig, 370 ppGoogle Scholar
  87. Vernadsky VI (1944) Problems of biogeochemistry II. Trans Connect Acad Arts Sci 35:483–517Google Scholar
  88. Vernadsky VI (1997) The biosphere. Springer, Berlin Heidelberg New York, 192 ppGoogle Scholar
  89. Viles HA (1984) Biokarst. Review and prospect. Prog Phys Geogr 8:532–542Google Scholar
  90. Von Bloh W, Franck S, Bounama C, Schellnhuber H-J (2003) Biogenic enhancement of weathering and the stability of the ecosphere. Geomic J 20(5):501–512Google Scholar
  91. Walker JCG (1993) Biogeochemical cycles of carbon on a hierarchy of time scales. In: Oremland RS (ed) Biogeochemistry of global change. Chapman and Hall, New York, pp 3–28Google Scholar
  92. Wallander H, Wickman T (1999) Biotite and microcline as potassium sources in ectomycorrhizal and non-mycorrhizal Pinus sylvestris seedlings. Mycorrhiza 9(1):25–32CrossRefGoogle Scholar
  93. Wang FX, Junfa CJ, Jing JLHJW (1993) Biocarst. Geological Publication House, Beijing, 130 ppGoogle Scholar
  94. Warscheid T, Oelting M, Krumbein WE (1991) Physico-chemical aspects of biodeterioration processes on rocks with special regard to organic pollutants. Int Biodeter 28:37–48CrossRefGoogle Scholar
  95. Wong PZ, Howard J (1986) Surface roughening and the fractal nature of rocks. Phys Rev Lett 57:637–641CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Anna A. Gorbushina
    • 1
  • W.E. Krumbein
    • 1
  1. 1.AG Geomikrobiologie, ICBMCarl von Ossietzky UniversitätOldenburgGermany

Personalised recommendations