Advertisement

Microorganisms of Biological Crusts on Soil Surfaces

  • Burkhard Büdel
Part of the Soil Biology book series (SOILBIOL, volume 3)

4 Conclusions

Our knowledge of the biodiversity of soil crust biota from different geographical regions is rather dissimilar. This, on the one hand, is based on different methods applied by most floristic studies (e.g., determination is only rarely based on cultured material in the case of cyanobacteria, algae and fungi). On the other hand, the species concept, especially of cyanobacteria, is currently in a state of flux. For future research, the application of molecular tools should be of great help (e.g., fluorescence in situ hybridization (FISH), DNA chips for the most common taxa). More attention must also be drawn to the heterotrophic part of soil crusts in order to fully understand turnover rates.

In the ecological context, it would be important to focus on their role as primary producers, as C and N sinks or as soil stabilizers against erosion. Moreover, their influence on higher plant diversity and succession needs more investigation before we really understand the role of biological soil crusts in the ecosystem context.

Keywords

Soil Crust Biological Soil Crust Desert Soil Cladosporium Herbarum Close Living Relative 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bamforth SS (1984) Microbial distributions in Arizona deserts and woodlands. Soil Biol Biochem 16:133–137CrossRefGoogle Scholar
  2. Belnap J (2001) Microbes and microfauna associated with biological soil crusts. In: Belnap J, Lange OL (eds) Biological soil crusts: structure, function, and management. Ecological studies, vol 150. Springer, Berlin Heidelberg New York, pp 167–174Google Scholar
  3. Belnap J, Büdel B, Lange OL (2001) Biological soil crusts: characteristics and distribution. In: Belnap J, Lange OL (eds) Biological soil crusts: structure, function, and management. Ecological studies, vol 150. Springer, Berlin Heidelberg New York, pp 3–30Google Scholar
  4. Bölter M (1989) Microbial activity in soils from Antarctica (Casey Station, Wilkes Land). Proc NIPR Symp Polar Biol 2:146–153Google Scholar
  5. Bölter M (1996) Analysis of soil microbial communities (autotrophs and heterotrophs) from King George Island (Arctowski Station). Proc NIPR Symp Polar Biol 9:283–298Google Scholar
  6. Bond RD, Harris RD (1964) The influence of the microflora on physical properties of soils. I. Effects associated with filamentous algae and fungi. Aust J Soil Res 2:111–122Google Scholar
  7. Boyer SL, Johansen JR, Flechtner VR (2002) Phylogeny and genetic variance in terrestrial Microcoleus (Cyanophyceae) species based on sequence analysis of the 16S rRNA gene and associated 16S-23S ITS region. J Phycol 38:1222–1235CrossRefGoogle Scholar
  8. Brock TD, Madigan MT, Martinko JM, Parker J (1994) Biology of microorganisms. Prentice Hall, Englewood CliffsGoogle Scholar
  9. Büdel B (2001a) Biological soil crusts of South America. In: Belnap J, Lange OL (eds) Biological soil crusts: structure, function, and management. Ecological studies, vol 150. Springer, Berlin Heidelberg New York, pp 51–55Google Scholar
  10. Büdel B (2001b) Biological soils crusts in European temperate and Mediterranean regions. In: Belnap J, Lange OL (eds) Biological soil crusts: structure, function, and management. Ecological studies, vol 150. Springer, Berlin Heidelberg New York, pp 75–86Google Scholar
  11. Büdel B (2001c) Biological soil crusts of Asia including the Don and Volga region. In: Belnap J, Lange OL (eds) Biological soil crusts: structure, function, and management. Ecological studies, vol 150. Springer, Berlin Heidelberg New York, pp 87–94Google Scholar
  12. Büdel B (2001d) Synopsis: Biogeography of soil-crust biota. In: Belnap J, Lange OL (eds) Biological soil crusts: structure, function, and management. Ecological studies, vol 150. Springer, Berlin Heidelberg New York, pp 141–152Google Scholar
  13. Büdel B, Lüttge U, Stelzer R, Huber O, Medina E (1994) Cyanobacteria of rocks and soils of the Orinoco lowlands and the Guyana uplands, Venezuela. Bot Acta 107:422–431Google Scholar
  14. Cameron RE (1969) Abundance of microflora in soils of desert regions. JPL Space Prog Techn Rep no 32 (1378):1–16Google Scholar
  15. Cameron RE (1971) Antarctic soil microbial and ecological investigations. In: Quam LO, Porter HD (eds) Research in the Antarctic American Association for the Advancement of cience. Washington, DC, pp 137–189Google Scholar
  16. Eldridge DJ (2001) Biological soil crusts of Australia. In: Belnap J, Lange OL (eds) Biological soil crusts: structure, function, and management. Ecological studies, vol 150. Springer, Berlin Heidelberg New York, pp 119–131Google Scholar
  17. Evans RD, Johansen JR (1999) Microbiotic crusts and ecosystem processes. Crit Rev Plant Sci 18:183–225Google Scholar
  18. Fewer D, Friedl T, Büdel B (2002) Chroococcidiopsis and heterocyst-differentiating cyanobacteria are each other’s closest living relatives. Mol Phylogenet Evol 23:82–90Google Scholar
  19. Fletcher JE, Martin WP (1948) Some effects of algae and molds in the rain crust of desert soils. Ecology 29:95–100Google Scholar
  20. Galun M, Garty J (2001) Biological soil crusts of the Middle East. In: Belnap J, Lange OL (eds) Biological soil crusts: structure, function, and management. Ecological studies, vol 150. Springer, Berlin Heidelberg New York, pp 95–106Google Scholar
  21. Garcia-Pichel F, Castenholz RW (1991) Characterization and biological implications of scytonemin, a cyanobacterial sheath pigment. J Phycol 27:395–409CrossRefGoogle Scholar
  22. Green TGA, Broady PA (2001) Biological soil crusts of Antarctica. In: Belnap J, Lange OL (eds) Biological soil crusts: structure, function, and management. Ecological studies, vol 150. Springer, Berlin Heidelberg New York, pp 133–139Google Scholar
  23. Greenfield LG (1997) Nitrogen in soil Nostoc mats: forms, release and implications for nutrient cycling in Antarctica. NZ Nat Sci 23: 101–107Google Scholar
  24. Hansen ES (2001) Lichen-rich soil crusts of arctic Greenland. In: Belnap J, Lange OL(eds) Biological soil crusts: structure, function, and management. Ecological studies, vol 150. Springer, Berlin Heidelberg New York, pp 57–65Google Scholar
  25. Hawksworth DL (1988) The variety of fungal/algal symbioses, their evolutionary significance, and the nature of lichens. Bot J Linn Soc 96:3–20Google Scholar
  26. Hunt CD, Durrell LW (1966) Distribution of fungi and algae. US Geol Surv Profess Pap 509:55–66Google Scholar
  27. Ingham RE, Trofymow JA, Ingham ER, Coleman DC (1985) Interactions of bacteria, fungi, and their nematode grazers: effects on nutrient cycling, and plant growth. Ecol Monogr 55:119–140Google Scholar
  28. Kieft TL (1991) Soil microbiology in reclamation of arid and semi-arid lands. In: Skujins J (ed) Semiarid lands and deserts: soil resource and reclamation. Decker, New York, pp 209–256Google Scholar
  29. Killian C, Fehér D (1939) Recherches sur la phénomène microbiologie des sols désertiques. Encycl Biol 21:1–127Google Scholar
  30. Komáromy ZP (1976) Soil algal growth types as edaphic adaptations in Hungarian forest and grass steppe ecosystems. Acta Bot Acad Sci Hung 22:373–379Google Scholar
  31. Lukešová A, Komárek J (1987) Succession of soil algae on dumps from strip coal-mining in the Most region (Czechoslovakia). Folia Geobot Phytotax, Praha 22:355–362Google Scholar
  32. Mollenhauer D, Büdel B, Mollenhauer R (1994) Approaches to species delimitations in the genus Nostoc Vaucher 1803 ex Bornet et Flahault 1888. Arch Hydrobiol Suppl 105 (Algol Stud 75): 189–209Google Scholar
  33. Mollenhauer D, Bengtson R, Lindstrøm E-A (1999) Macroscopic cyanobacteria of the genus Nostoc: a neglected and endangered constituent of European inland aquatic biodiversity. Eur J Phycol 34:349–360Google Scholar
  34. Patova E, Sivkov M (2001) Diversity of soil cyanophyta, CO2-gas exchange and acetylene reduction of the soil crust in the cryogenic soils (East-European tundra). Nova Hedwigia, Beih 123:387–395Google Scholar
  35. Paus SM (1997) Die Erdflechtenvegetation Nord westdeutschlands und einiger Randgebiete. Bibl Lichenol 66:1–222Google Scholar
  36. Powers LE, Ho M, Freckman DW, Virginia RA (1998) Distribution, community structure, and microhabitats of soil invertebrates along an elevational gradient in Taylor Valley, Antarctica. Arctic Alpine Res 30:133–141Google Scholar
  37. Proteau PJ, Gerwick WH, Garcia-Pichel F, Castenholz RW (1993) The structure of scytonemin, an ultraviolet sunscreen pigment from the sheaths of cyanobacteria. Experientia 49:825–829CrossRefGoogle Scholar
  38. Reimers H (1950) Beiträge zur Kenntnis der Bunten Erdflechten-Gesellschaft. I. Zur Systematik und Verbreitung der Charakterflechten der Gesellschaft besonders im Harzvorland. Ber Dtsch Bot Ges 63:148–156Google Scholar
  39. Rosentreter R, Belnap J (2001) Biological soil crusts of North America. In: Belnap J, Lange OL (eds) Biological soil crusts: structure, function, and management. Ecological studies, vol 150. Springer, Berlin Heidelberg New York, pp 31–50Google Scholar
  40. Rumrich U, Rumrich M, Lange-Bertalot H (1989) Diatomeen als “Fensteralgen” in der Namib-Wüste und anderen ariden Gebieten von SWA/Namibia. Dinteria 20:23–29Google Scholar
  41. San José JJ, Bravo CR (1991) CO2 exchange in soil algal crusts occurring in the Trachypogon savannas of the Orinoco Llanos, Venzuela. Plant Soil 135:233–244Google Scholar
  42. Schwabe GH (1963) Blaualgen der phototrophen Grenzschicht. Pedobiol 2:132–152Google Scholar
  43. Skujins J (1984) Microbial ecology of desert soils. Adv Microb Ecol 7:49–92Google Scholar
  44. States JS, Christensen M, Kinter CL (2001) Soil fungi as components of biological soil crusts. In: Belnap J, Lange OL (eds) Biological soil crusts: structure, function, and management. Ecological studies, vol 150. Springer, Berlin Heidelberg New York, pp 155–166Google Scholar
  45. Tchan YT, Whitehouse JA (1953) Study of soil algae II. The variation of the algal populations in sandy soil. Proc Linn Soc NSW 78:160–170Google Scholar
  46. Türk R, Gärtner G (2001) Biological soil crusts of the subalpine, alpine and nival areas in the Alps. In: Belnap J, Lange OL (eds) Biological soil crusts: structure, function, and management. Ecological studies, vol 150. Springer, Berlin Heidelberg New York, pp 67–73Google Scholar
  47. Ullmann I, Büdel B (2001a) Biological soil crusts of Africa. In: Belnap J, Lange OL (eds) Biological soil crusts: structure, function, and management. Ecological studies, vol 150. Springer, Berlin Heidelberg New York, pp 107–118Google Scholar
  48. Ullmann I, Büdel B (2001b) Ecological determinants of species composition of biological soil crusts on a landscape scale. In: Belnap J, Lange OL (eds) Biological soil crusts: structure, function, and management. Ecological studies, vol 150. Springer, Berlin Heidelberg New York, pp 203–213Google Scholar
  49. Vincent WF (1988) Microbial ecosystems of Antarctica. Studies in polar research. Cambridge Univ Press, CambridgeGoogle Scholar
  50. Vogel S (1955) Niedere “Fensterpflanzen” in der südafrikanischen Wüste. Beitr Biol Pflanz 31:45–135Google Scholar
  51. Walter DE (1988) Nematophagy by soil arthropods from the shortgrass steppe, Chihuahuan Desert and Rocky Mountains of the Central United States. Agric Eco Syst Environ 24:307–316Google Scholar
  52. Wheeler CC, Flechtner VR, Johansen JR (1993) Microbial spatial heterogeneity in microbiotic crusts in Colorado National Monument. II. Bacteria. Great Basin Nat 53:31–39Google Scholar
  53. Whitford WG (1996) The importance of the biodiversity of soil biota in arid ecosystems. Biodiv Conserv 5:185–195Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Burkhard Büdel
    • 1
  1. 1.Department of Biology/BotanyUniversity of KaiserslauternKaiserslauternGermany

Personalised recommendations