Advertisement

Regulation of Microbial Activities in Functional Domains of Roots and Invertebrates

  • Patrick Lavelle
  • Corinne Rouland
  • Michel Diouf
  • Françoise Binet
  • Anne Kersanté
Part of the Soil Biology book series (SOILBIOL, volume 3)

Keywords

Microbial Community Microbial Activity Litter Decomposition Faecal Pellet Soil Biol 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Andren O, Lindberg T, Paustian K, Rosswall T (1990) Ecology of arable land. Organisms, carbon and nitrogen cycling. Ecological bulletins, Munksgaard, Copenhagen, 221 ppGoogle Scholar
  2. Bachman G, Kinzel (1992) Biochemical screening of the soil-root system of six different plants. Soil Biol Biochem 24:543–552Google Scholar
  3. Barois I, Lavelle P (1986) Changes in respiration rate and some physicochemical properties of a tropical soil during transit through Pontoscolex corethrurus (Glossoscolecidæ, Oligochæta). Soil Biol Biochem 18(5):539–541CrossRefGoogle Scholar
  4. Baudoin E, Benizri E, Guckert A (2001) Metabolic fingerprint of microbial communities from distinct maize rhizosphere compartments. Eur J Soil Biol 37:85–93CrossRefGoogle Scholar
  5. Baudoin E, Benizri E, Guckert A (2003) Impact of artificial root exudates on the bacterial community structure in bulk soil and maize rhizosphere. Soil Biol Biochem 35:1183–1192CrossRefGoogle Scholar
  6. Bazin MJ, Markham P, Scott EM, Lynch JM (1990) Population dynamics and rhizosphere interactions. In: Lynch JM (ed) The rhizosphere. Wiley, Chichester, pp 99–127Google Scholar
  7. Bhatnagar T (1975) Lumbricids and humification: a new aspect of the microbial incorporation of nitrogen induced by earthworm. In: Kilbertus G, Reisinger O, Mourey A, Cancela da Fonseca JA (eds) Biodégradation et humification. Pierron, Nancy, France, pp 168–182Google Scholar
  8. Bignell DE (1994) Soil-feeding and gut morphology in higher termites. In: Hunt JH, Nalepa CA (eds) Nourishment and evolution in insect societies. Westview Press, Boulder, Colorado, pp 131–158Google Scholar
  9. Billès G, Bottner P (1981) Effet des racines vivantes sur la décomposition d’une litière racinaire marquée au 14C. Plant Soil 62:193–208Google Scholar
  10. Blackwood CB, Paul EA (2003) Eubacterial community structure and population size within the soil light fraction, rhizosphere, and heavy fraction of several agricultural systems. Soil Biol Biochem 35:1245–1255CrossRefGoogle Scholar
  11. Bonkowski M, Cheng WX, Griffiths BS, Alphei G, Scheu S (2000) Microbial-faunal interactions in the rhizosphere and effects on plant growth. Eur J Soil Biol 36:135–147CrossRefGoogle Scholar
  12. Bowen GD, Rovira AD (1976) Microbial colonization of plant roots. Annu Rev Phytopathol 14:121–144CrossRefGoogle Scholar
  13. Brown GG, Barois I, Lavelle P (2000) Regulation of soil organic matter dynamics and microbial activity in the drilosphere and the role of interactions with other edaphic functional domains. Eur J Soil Biol 36:177–198CrossRefGoogle Scholar
  14. Clarholm M (1985) Interactions of bacteria, protozoa and plant leading to mineralization of soil nitrogen. Soil Biol Biochem 17:181–187CrossRefGoogle Scholar
  15. Coleman DC, Ingham RE, McClellan JF, Trofymow JA (1984) Soil nutrient transformations in the rhizosphere via animal—microbial interactions. In: Rayner ADM, Anderson JM, Walton DWH (eds) Invertebrates — microbial interactions. Cambridge Univ Press, Cambridge, pp 35–58Google Scholar
  16. Cooke A (1983) The effect of fungi on food selection by Lumbricus terrestris L. In: Satchell JE (ed) Earthworm ecology. Chapman and Hall, London, pp 365–373Google Scholar
  17. Cortez J, Hameed R, Bouché MB (1989) C and N transfer in soil with or without earthworms fed with 14C-and 15N-labelled wheat straw. Soil Biol Biochem 21:491–497CrossRefGoogle Scholar
  18. Curl EA, Truelove B (1986) The Rhizosphere. Springer, Berlin Heidelberg New YorkGoogle Scholar
  19. De Ruiter PC, Vanveen JA, Moore JC, Brussaard L, Hunt HW (1993) Calculation of nitrogen mineralization in soil food webs. Plant Soil 157:263–273CrossRefGoogle Scholar
  20. Diouf MN (2003) Les communautés fongiques des structures de récolte de plusieurs espèces de termites Macrotermitinae: origine et évolution. Thèse de l’Université, Paris XII, 165 ppGoogle Scholar
  21. Fall S (2002) Réponse des communautés microbiennes d’un sol Sahélien à la modification de ses habitats: cas de l’activité de construction d’un termite humivore Cubitermes niokolensis. Thèse de l’Université Claude Bernard (Lyon 1), 176 ppGoogle Scholar
  22. Fang C, Radosevich M, Fuhrmann JJ (2001) Characterisation of rhizosphere microbial community structure in five similar grass species using FAME and BIOLOG analyses. Soil Biol Biochem 33:679–682Google Scholar
  23. Garvin MH, Lattaud C, Trigo D, Lavelle P (2000) Activity of glycolytic enzymes in the gut of Hormogaster elisae (Oligochaeta, Hormogastridae). Soil Biol Biochem 32:929–934Google Scholar
  24. Grayston SJ, Wang S, Campbelle CD, Edwards AC (1998) Selective influence of plant species on microbial diversity in the rhizosphere. Soil Biol Biochem 30:369–378CrossRefGoogle Scholar
  25. Hamilton WE, Sillman DY (1989) Influence of earthworm middens on the distribution of soil microarthropods. Biol Fertil Soils 8:279–284Google Scholar
  26. Hanlon RDG, Anderson JM (1980) Influence of Macroarthropod feeding activities on microflora in decomposing oak leaves. Soil Biol Biochem 12:255–261CrossRefGoogle Scholar
  27. Hattori T, Hattori R (1976) The physical environment in soil microbiology. An attempt to extend principles of microbiology to soil micro-organisms. Crit Rev Microbiol 26:423–461Google Scholar
  28. Heal OW, Flannagan PW, French DD, MacLean SF (1981) Decomposition and accumulation of organic matter in tundra. In: Bliss LC, Heal OW, Moore JJ (eds) Tundra ecosystems: a comparative analysis. Cambridge Univ Press, Cambridge, pp 587–633Google Scholar
  29. Higashi M, Abe T, Burns TP (1992) Carbon-nitrogen balance and termite ecology. Proc R Soc Lond B 249:303–308Google Scholar
  30. Ingham ER, Trofymow JA, Ames RN, Hunt HW, Morley CR, Moore JC, Coleman DC (1986) Trophic interactions and nitrogen cycling in a semi-arid grassland soil. I. Seasonal dynamics of the natural populations, their interactions and effects on nitrogen cycling. J Appl Ecol 23: 597–612Google Scholar
  31. Jansson PE, Berg B (1985) Temporal variation of litter decomposition in relation to simulated soil climate. Long-term decomposition in a Scots pine forest. V. Can J Bot 63:1008–1016Google Scholar
  32. Jenkinson DS (1966) The priming action. J Appl Radiat Isotopes [Suppl]: 199–208Google Scholar
  33. Kersanté A (2003) Rôle régulateur de la macrofaune lombricienne dans la dynamique de l’herbicide atrazine en sol cultivé tempéré. Thèse de l’Université Rennes, 166 ppGoogle Scholar
  34. Kozdroj J, van Elsas JD (2000) Response of bacterial community to root exudates in soil polluted with heavy metals assessed by molecular and cultural approaches. Soil Biol Biochem 32:1405–1417Google Scholar
  35. Lamotte M (1989) Place des animaux détritivores et des microorganismes décomposeurs dans les flux d’énergie des savanes africaines. Pedobiologia 33:17–35Google Scholar
  36. Latour X, Corberand T, Laguerre G, Allard F, Lemanceau P (1996) The composition of fluorescent Pseudomonad populations associated with roots as influenced by plant and soil type. Appl Environ Microbiol 62: 2449–2456Google Scholar
  37. Lattaud C, Locati S, Mora P, Rouland C, Lavelle P (1998) The diversity of digestive systems in tropical geophagous earthworms. Appl Soil Ecol 9:189–195CrossRefGoogle Scholar
  38. Lavelle P, Spain AV (2001) Soil ecology. Kluwer, Dordrecht, 654 ppGoogle Scholar
  39. Lavelle P, Blanchart E, Martin A, Martin S, Spain A, Toutain F, Barois I, Schaefer R (1993) A hierarchical model for decomposition in terrestrial ecosystems: application to soils of the humid tropics. Biotropica 25:130–150Google Scholar
  40. Lavelle P, Lattaud C, Trigo D, Barois I (1995) Mutualism and biodiversity in soils. In: Collins HP, Robertson GP, Klug MJ (eds) The significance and regulation of soil biodiversity. Kluwer, Dordrecht, pp 23–33Google Scholar
  41. Lavelle P, Barros E, Blanchart E, Brown G, Desjardins T, Mariani L, Rossi J (2001) Soil organic matter management in the tropics: why feed the soil macrofauna? Nutr Cycl Agroecosyst 61:53–61CrossRefGoogle Scholar
  42. Loranger G, Ponge JF, Imbert D, Lavelle P (2002) Leaf decomposition in two semi-evergreen tropical forests: influence of litter quality. Biol Fertil Soil 35:247–252Google Scholar
  43. Lupwali NZ, Rice WA, Clayton GW (1998) Soil microbial diversity and community structure under wheat as influenced by tillage and crop rotation. Soil Biol Biochem 30:1733–1741Google Scholar
  44. Maloney PE, van Bruggen AHC, Hu S (1997) bacterial community structure in relation to the carbon environment in lettuce and tomato rhizosphere and in bulk soil. Microb Ecol 34:109–117CrossRefGoogle Scholar
  45. Maraun M, Alphei J, Bonkowski M, Buryn R, Migge S, Peter M, Schaefer M, Scheu S (1999) Middens of the earth worm Lumbricus terrestris (Lumbricidae) microhabitats for micro-and mesofauna in forest soil. Pedobiologia 43:276–287Google Scholar
  46. Marschner P, Yang CH, Lieberei R, Crowley DE (2001) Soil and plant specific effects on bacterial community composition in the rhizosphere. Soil Biol Biochem 33:1437–1445CrossRefGoogle Scholar
  47. Martin A, Cortez J, Barois I, Lavelle P (1987) Les mucus intestinaux de Ver de Terre, moteur de leurs interactions avec la microflore. Rev Ecol Biol Sol 24:549–558Google Scholar
  48. Mary B, Fresneau C, Morel JL, Mariotti A (1993) C and N cycling during decomposition of root mucilage, roots and glucose in soil. Soil Biol Biochem 25:1005–1014CrossRefGoogle Scholar
  49. Miethling R, Ahrends K, Tebbe CC (2003) Structural differences in the rhizosphere communities of legumes are not equally reflected in community-level physiological profiles. Soil Biol Biochem 35:1405–1410CrossRefGoogle Scholar
  50. Mora P, Seugé C, Chotte JL, Rouland C (2003) Physico-chemical typology of the biogenic structures of termites and earthworms: a comparative analysis. Biol Fertil Soil 37:245–249Google Scholar
  51. Nussbaumer U, Ascher J, Kraft A, Insam H (1997) Litter decomposition of a tropical understory species (Ctenanthe lubbersiana) grown under ambient and elevated CO2. Acta Oecol 18:377–381Google Scholar
  52. Parle JN (1963) Micro-organisms in the intestines of earthworms. J Gen Microbiol 31:1–11Google Scholar
  53. Reichle DE, McBrayer JF, Ausmus S (eds) (1975) Ecological energetics of decomposer invertebrates in a deciduous forest and total respiration budget. Academia, Prague, pp 283–293Google Scholar
  54. Rouland-Lefèvre C (2000) Symbiosis with fungi. In: Abe T, Bignell DE, Higashi M (eds) Termites: evolution, society, symbioses, ecology. Kluwer, Dordrecht, pp 289–306Google Scholar
  55. Ryszkowski L (1975) Energy and matter economy of ecosystems. In: Van Dobben WH, Lowe-MacConnell RH (eds) Unifying concepts in ecology. Junk, The Hague, pp 109–126Google Scholar
  56. Sallih Z, Bottner P (1988) Effect of wheat (Triticum aestivum) roots on mineralization rates of soil organic matter. Biol Fertil Soils 7: 67–70CrossRefGoogle Scholar
  57. Satchell JE (1971) Feasibility study of an energy budget for Meathop Wood. In: Duvigneaud P (ed) Productivité des écosystèmes forestiers. UNESCO, ParisGoogle Scholar
  58. Scheu S (1987) Microbial activity and nutrient dynamics in earthworm casts (Lumbricidae). Biol Fertil Soil 5:230–234Google Scholar
  59. Setälä H, Tyynismaa M, Martikainen E, Huhta V (1991) Mineralisation of C,N, P in relation to decomposition community structure in coniferous forest soil. Pedobiologia 35:285–296Google Scholar
  60. Spain AV, Le Feuvre RP (1987) Breakdown of four litters of contrasting quality in a tropical Australian rainforest. J Appl Ecol 24:279–288Google Scholar
  61. Swift MJ, Heal OW, Anderson JM (1979) Decomposition in terrestrial ecosystems. Blackwell, OxfordGoogle Scholar
  62. Tiunov AV, Scheu S (1999) Microbial respiration, biomass, biovolume and nutrient status in burrow walls of Lumbricus terrestris L. (Lumbricidae). Soil Biol Biochem 31:2039–2048CrossRefGoogle Scholar
  63. Tiunov AV, Bonkowski M, Alphei J, Scheu S (2001) Microflora, Protozoa and Nematoda in Lumbricus terrestris burrow walls: a laboratory experiment. Pedobiologia 45:46–60CrossRefGoogle Scholar
  64. Tiwari SC, Mishra RR (1993) Fungal abundance and diversity in earthworm casts and in uningested soil. Biol Fertil Soils 16:131–134Google Scholar
  65. Torsvik V, Salte K, Sorheim R, Goksoyr J (1990) Comparison of phenotypic diversity and DNA heterogeneity in a population of soil bacteria. Appl Environ Microbiol 56:776–781Google Scholar
  66. Trigo D, Barois I, Garvin MH, Huerta E, Irisson S, Lavelle P (1999) Mutualism between earthworms and soil microflora. Pedobiologia 43: 866–873Google Scholar
  67. Vancura V (1980) Fluorescent pseudomonads in the rhizosphere of plants and their relation to root exudates. Folia Microbiol 25:168–173CrossRefGoogle Scholar
  68. Vannier G (1985) Modes d’exploitation et partage des ressources alimentaires dans le système saprophage par les microarthropodes du sol. Bull Ecol 16:19–34Google Scholar
  69. Voroney RP (1983) decomposition of crop residues. PhD Thesis, University of Saskatchewan, CanadaGoogle Scholar
  70. Yang CH, Crowley DE (2000) Rhizosphere microbial community structure in relation to root location and plant iron nutritional status. Appl Environ Microbiol 66:345–351CrossRefGoogle Scholar
  71. Zak JC, Willig MR, Moorhead DL, Wildman HG (1994) Functional diversity of microbial communities: a quantitative approach. Soil Biol Biochem 26:1101–1108CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Patrick Lavelle
  • Corinne Rouland
  • Michel Diouf
    • 1
  • Françoise Binet
    • 2
  • Anne Kersanté
    • 2
  1. 1.IRDUniversity of Paris 06BondyFrance
  2. 2.CNRS, UMR ECOBIOUniversité de Rennes 1RennesFrance

Personalised recommendations