Mycorrhizosphere: Strategies and Functions

  • Bhoopander Giri
  • Pham Huong Giang
  • Rina Kumari
  • Ram Prasad
  • Minu Sachdev
  • Amar P. Garg
  • Ralf Oelmüller
  • Ajit Varma
Part of the Soil Biology book series (SOILBIOL, volume 3)


Arbuscular Mycorrhizal Fungus Arbuscular Mycorrhizal Mycorrhizal Fungus Arbuscular Mycorrhiza Mycorrhizal Colonization 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Al-Karaki GN, Clark RB (1998) Growth, mineral acquisition and water use by mycorrhizal wheat grown under water stress. J Plant Nutr 21: 263–276Google Scholar
  2. Al-Karaki GN, Hammad R, Rusan M (2001) Response of two tomato cultivars differing in salt tolerance to inoculation with mycorrhizal fungi under salt stress. Mycorrhiza 11:43–47CrossRefGoogle Scholar
  3. Allen MF (1982) Influence of vesicular-arbuscular mycorrhizae on water movement through Bouteloua gracilis (H.B.K.) Lag ex Steud. New Phytol 91:191–196Google Scholar
  4. Allen MF, Smith WK, Moore TS Jr, Christensen M (1981) Comparative water relations and photosynthesis of mycorrhizal and non-mycorrhizal Bouteloua gracilis H.B.K. New Phytol 88:683–693Google Scholar
  5. Al-Raddad A, Adhmad M (1995) Interaction of Glomus mosseae and Paecilomyces lilacinus on Meloidogyne javanica of tomato. Mycorrhiza 5:233–236Google Scholar
  6. Auge RM (2000) Stomatal behavior of arbuscular mycorrhizal plants. In: Kapulnik Y, Douds D (eds) Mycorrhizal symbiosis: molecular biology and physiology. Kluwer, Dordrecht, pp 201–237Google Scholar
  7. Auge RM (2001) Water relations, drought and vesicular-arbuscular mycorrhizal symbiosis. Mycorrhiza 11:3–42Google Scholar
  8. Azcon-Aguilar C, Barea JM (1992) Interaction between mycorrhizal fungi and other rhizosphere microorganisms. In: Allen MJ (ed) Mycorrhizal functioning: an integrative plant-fungal process. Chapman and Hall, New York, pp 163–198Google Scholar
  9. Azcon-Aguilar C, Barea JM (1996) Arbuscular mycorrhizas and biological control of soil born-plant pathogens: an overview of the mechanisms involved. Mycorrhiza 6:457–464Google Scholar
  10. Bansal M, Mukerji KG (1994) Positive correlation between root exudation and VAM induced changes in rhizosphere mycoflora. Mycorrhiza 5:39–44CrossRefGoogle Scholar
  11. Bansal M, Mukerji KG (1996) Root exudates in rhizosphere biology. In: Mukerji KG, Singh VP (eds) Concepts in applied microbiology and biotechnology. Aditya Book, New Delhi, India, pp 98–120Google Scholar
  12. Bansal M, Chamola BP, Sarwer N, Mukerji KG (2000) Mycorrhizosphere: interaction between rhizosphere microflora and VAM fungi. In: Mukerji KG, Chamola BP, Singh J (eds) Mycorrhizal biology. KA/PP, New York, pp 143–152Google Scholar
  13. Bardgett RD, Wardle DA, Yeates GW (1998) Linking above-ground and below-ground food webs: how plant responses to foliar herbivory influences soil organisms. Soil Biol Biochem 30:1867–1878Google Scholar
  14. Barea JM, Azcon R, Azcon-Aguilar C (1993) Mycorrhiza and crops. In: Ingram DS, Williams PH (eds) Advances in plant pathology: mycorrhiza synthesis. Academic Press, London, pp 391–416Google Scholar
  15. Barea JM, Tober RM, Azcon-Aguilar C (1996) Effect of genetically modified Rhizobium meliloti inoculant on the development of arbuscular mycorrhiza, root morphology, nutrient uptake and biomass accumulation in Medicago sativa L. New Phytol 134:361–369Google Scholar
  16. Barea JM, Andrade G, Bianciotto V, Dowling D, Lohrke S, Bonfante P, O’Gara F, Azcon-Aguilar C (1998) Impact on arbuscular mycorrhiza formation of Pseudomonas strains used as inoculant for the biocontrol of soil-borne plant fungal pathogens. Appl Environ Microbiol 64: 2304–2307Google Scholar
  17. Barea JM, Azcon R, Azcon-Aguilar C (2002a) Mycorrhizosphere interactions to improve plant fitness and soil quality. Anton Leeuw 81:343–351Google Scholar
  18. Barea JM, Toro M, Orozco MO, Campos E, Azcon R (2002b) The application of isotopic (32P and 15N) dilution techniques to evaluate the interactive effect of phosphate solubilizing rhizobacteria, mycorrhizal fungi, and Rhizobium to improve agronomic efficiency of rock phosphate for legume crops. Nutr Cycl Agroecosyst 63:35–42CrossRefGoogle Scholar
  19. Bethlenfalvay GJ, Brown MS, Ames RN, Thomus RS (1988) Effect of drought on host and endophyte development in mycorrhizal soybeans in relation to water use and phosphate uptake. Plant Physiol 72:565–571Google Scholar
  20. Bianciotto V, Bandi C, Minerdi D, Sironi M, Tichy HV, Bonfante P (1996) An obligately endosymbiontic mycorrhizal fungus itself harbors obligately intracellular bacteria. Appl Environ Microbiol 62:3005–3010Google Scholar
  21. Briccoli-Bati C, Rinaldi R, Tocci C, Sirianni T, Tannotta N (1994) Influence of salty water irrigation on mycorrhizae of young olive trees in containers. Acta Hortic 356:218–220Google Scholar
  22. Bringhurst RM, Cardon ZG, Gage DJ (2001) Galactosides in the rhizosphere: utilization by Sinorhizobium meliloti and development of a biosensor. Proc Natl Acad Sci USA 98:4540–4545CrossRefGoogle Scholar
  23. Burkert B, Robson A (1994) 65Zn uptake in subterranean clover (Trifolium subterraneum L.) by three vesicular arbuscular mycorrhizal fungi in a root-free sandy soil. Soil Biol Biochem 26:1117–1124Google Scholar
  24. Calvet C, Barea JM, Pera J (1992) In vitro interaction between the vesicular-arbuscular mycorrhizal fungus Glomus mosseae and some saprophytic fungi isolated from organic substrates. Soil Biol Biochem 24: 775–780CrossRefGoogle Scholar
  25. Carpenter-Boggs L, Loynachan TE, Stahl PD (1995) Spore germination of Gigaspora margarita stimulated by volatiles of soil-isolated actinomycetes. Soil Biol Biochem 27:1445–1451CrossRefGoogle Scholar
  26. Chandraghatgi SP, Sreenivasa MN (1995) Possible synergistic interaction between Glomus macrocarpum and Bacillus polymyxa in chilli. In: Adholeya A, Singh S (eds) Proceeding of 3rd National Conference on Mycorrhiza. TERI, New Delhi, pp 180–183Google Scholar
  27. Chao CC, Wang YP (1991) Effects of heavy metals on vesicular arbuscular mycorrhizae and nitrogen fixation of soybean in major soil groups of Taiwan. J Chin Agric Chem Soc 29:290–300Google Scholar
  28. Cui M, Nobel PS (1992) Nutrient status, water uptake and gas exchange for three desert succulents infected with mycorrhizal fungi. New Phytol 122:645–649Google Scholar
  29. Diaz G, Honrubia M (1993) Infectivity of mine soils from Southeast Spain. II. Mycorrhizal population levels in spoilt sites. Mycorrhiza 4:85–88Google Scholar
  30. Dobbelaere S, Croonenborghs A, Thys A, Ptacek D, Vanderleyden J, Dutto P, Labander-Gonzalez C, Caballero-Mellado J, Aguirre JF, Kapulnik Y, Brener S, Burdman S, Kadouri D, Sarig S, Okon Y (2001) Response of agronomically important crops to inoculation with Azosprillum. Aust J Plant Physiol 28:1–9Google Scholar
  31. Duke ER, Johnson CR, Koch RE (1986) Accumulation of phosphorus, dry matter and betaine during NaCl stress of split-root citrus seedlings colonized with vesicular-arbuscular mycorrhizal fungi on zero, one or two halves. New Phytol 104:583–590Google Scholar
  32. Edwards D, Kerp H, Hass H (1998) Stomata in early land plants: an anatomical and ecophysiological approach. J Exp Bot 49:255–278CrossRefGoogle Scholar
  33. Ezz T, Nawar A (1994) Salinity and mycorrhizal association in relation to carbohydrate status, leaf chlorophyll and activity of peroxidase and polyphenol oxidase enzymes in sour orange seedlings. Alexandria J Agric Res 39:263–280Google Scholar
  34. Faber B, Zasoske R, Munns D, Shackel K (1990) A method for measuring hyphal nutrient and water uptake in mycorrhizal plants. Can J Bot 69: 87–94Google Scholar
  35. Fitter AH, Garbaye J (1994) Interaction between mycorrhizal fungi and other soil organisms. Plant Soil 159:123–132Google Scholar
  36. Gillespie AR, Pope PE (1991) Consequences of rhizosphere acidification on deliver and uptake kinetics of soil phosphorus. Tree Physiol 8: 195–204Google Scholar
  37. Giri B (2001) Mycorrhization in afforestation of stressed habitats. PhD Thesis, Department of Botany, University of Delhi, Delhi, IndiaGoogle Scholar
  38. Giri B, Chamola BP (1999) Vesicular arbuscular mycorrhizal fungi under salinity and drought conditions. In: Tewari JP, Lakhanpal TN, Singh J, Gupta R, Chamola BP (eds) Advances in microbial biotechnology. APH Publ, New Delhi, pp 422–427Google Scholar
  39. Giri B, Mukerji KG (1999) Improved growth and productivity of Sesbania grandiflora Pers under salinity stress through mycorrhizal technology. J Phytol Res 12:35–38Google Scholar
  40. Giri B, Mukerji KG (2003) Mycorrhizal inoculant alleviates salinity stress in Sesbania aegyptiaca Pres and S. grandiflora Pres under field conditions: evidence for improved magnesium and decreased sodium uptake. Mycorrhiza (published online 23 Oct 2003)Google Scholar
  41. Giri B, Kaur M, Mukerji KG (1999) Growth responses and dependency of Sesbania aegyptiaca on vesicular arbuscular mycorrhiza in salt stressed soil. Ann Agric Res 20:109–112Google Scholar
  42. Giri B, Kapoor R, Mukerji KG (2000) Sesbania aegyptiaca Pers seedlings response to VA mycorrhization in two types of soil. Phytomorphology 50:327–332Google Scholar
  43. Giri B, Kapoor R, Mukerji KG (2002) VAmycorrhizal/VAM technology in establishment of plants under salinity stress conditions. In: Mukerji KG, Manoharachari C, Chamola BP (eds) Techniques in mycorrhizal studies. Kluwer, Dordrecht, pp 313–327Google Scholar
  44. Giri B, Kapoor R, Lata A, Mukerji KG (2003a) Preinoculation with arbuscular mycorrhizae helps Acacia auriculiformis in a degraded Indian wasteland soil. Comm Soil Sci Plant Anal [coming in vol 35 issue (1&2)]. Dekker, New YorkGoogle Scholar
  45. Giri B, Kapoor R, Mukerji KG (2003b) Influence of arbuscular mycorrhizal fungi and salinity on growth, biomass, and mineral nutrition of Acacia auriculiformis. Biol Fertil Soils 38:170–175CrossRefGoogle Scholar
  46. Graham JH, Syvertsen JP, Smith ML (1987) Water relation of mycorrhizal and phosphorus fertilized non-mycorrhizal Citrus under drought stress. New Phytol 105:411–419Google Scholar
  47. Griffioen WAJ, Ietswaart JH, Ernst HO (1994) Mycorrhizal infection of an Agrostis capillaries population on a copper contaminated soil. Plant Soil 158:83–89CrossRefGoogle Scholar
  48. Gryndler M, Vejsadova H, Vosatka M, Catska V (1995) Influence of bacteria on vesicular arbuscular mycorrhizal infection of maize. Folia Microbiol 40:95–99Google Scholar
  49. Gupta RK (1991) Drought response in fungi and mycorrhizal plants. In: Arora DK (ed) Hand book of applied mycology, soil and plants. Dekker, New York, pp 55–75Google Scholar
  50. Habte H, Soedarjo M (1996) Response of Accacia mangium to vesicular arbuscular mycorrhizal inoculation, soil pH and soil P concentration in an oxisol. Can J Bot 74:155–161Google Scholar
  51. Heckman DS, Geiser DM, Eidell BR, Stauffer RL, Kardos NL, Hedges SB (2001) Molecular evidence for the early colonization of land by fungi and plants. Science 293:1129–1133CrossRefGoogle Scholar
  52. Hirrel MC, Gerdemann JW (1980) Improved growth of onion and bell pepper in saline soils by two vesicular arbuscular mycorrhizal fungi. Soil Sci Soc Am J 44:654–655CrossRefGoogle Scholar
  53. Horodyski RJ, Knauth LP (1994) Life on land in the Precambrian. Science 263:494–498Google Scholar
  54. Jeffries P, Barea JM (2001) Arbuscular mycorrhiza — a key component of sustainable plant soil ecosystem. In: Hock B (ed) The Mycota, vol IX. Fungal association. Springer, Berlin Heidelberg New York, pp 95–113Google Scholar
  55. Jeffries P, Gianinazzi S, Perotto S, Turnau K, Barea JM (2003) The contribution of arbuscular mycorrhizal fungi in sustainable maintenance of plant and soil fertility. Biol Fertil Soil 37:1–16Google Scholar
  56. Joner E, Roberto B, Leyval C (2000) Metal-binding capacity of arbuscular mycorrhizal mycelium. Plant Soil 226:227–234Google Scholar
  57. Joseph PJ, Sivaprasad P (2000) The potential of arbuscular mycorrhizal associations for biocontrol of soil-borne diseases. In: Upadhyay RK, Mukerji KG, Chamola BP (eds) Biocontrol potential and its exploitation in sustainable agriculture. KA/PP, New York, pp 139–153Google Scholar
  58. Juniper S, Abbott L (1993) Vesicular arbuscular mycorrhizas and soil salinity. Mycorrhiza 4:45–57CrossRefGoogle Scholar
  59. Kenrick P, Crane PR (1997) The origin and early evolution of plants on land. Nature 389:33–39CrossRefGoogle Scholar
  60. Koide R (1993) Physiology of the mycorrhizal plants. Adv Plant Pathol 9:33–54Google Scholar
  61. Leyval C, Turnau K, Haselwandter K (1997) Effect of heavy metal pollution on mycorrhizal colonization and function: physiological, ecological and applied aspects. Mycorrhiza 7:139–153CrossRefGoogle Scholar
  62. Lindermann RG (1988) Mycorrhizal interactions with the rhizosphere microflora. The mycorrhizosphere effect. Phytopathology 78: 366–371Google Scholar
  63. Loth FG, Hofner W (1995) Einfluss der VA-Mykorrhiza auf die Schwermetallaufnahmen von Hafer (Avena sativa L.) in Abhangigheit vom Kontaminationsgrad der Boden. Z Pflanzenernaehr Bodenkd 158: 339–345Google Scholar
  64. Lynch JM (1990) The rhizosphere. Wiley, New YorkGoogle Scholar
  65. Mancuso S, Rinaldelli E (1996) Response of young mycorrhizal and non-mycorrhizal plants of olive tree (Olea europaea L.) to saline conditions. II. Dynamics of electrical impedance parameters of shoots and leaves. Adv Hortic Sci 10:135–145Google Scholar
  66. McMillen BG, Juniper S, Abbott LK (1998) Inhibition of hyphal growth of vesicular arbuscular mycorrhizal infection from fungus spores in soil containing sodium chloride. Soil Biol Biochem 30:1639–1646CrossRefGoogle Scholar
  67. Moore JC, McCann K, Setala H, de Ruiter PC (2003) Top-down is bottom-up: dose predation in the rhizosphere regulate aboveground dynamics? Ecology 84:846–857Google Scholar
  68. Mukerji KG (1999) Mycorrhiza in control of plant pathogens: molecular approaches. In: Mukerji KG, Chamola BP, Upadhyay RK (eds) Biotechnological approaches in biocontrol of plant pathogens. Kluwer/Plenum, New York, pp 135–156Google Scholar
  69. Mukerji KG, Chamola BP, Sharma M (1997) Mycorrhiza in control of plant pathogens. In: Agnihotri VP, Sarbhoy A, Singh DV (eds) Management of threatening plant diseases of national importance. MPH, New Delhi pp 297–314Google Scholar
  70. Parmelle RW, Ehrenfeld JG, Tate RA (1993) Effects of pine roots on microorganisms, fauna and nitrogen availability in two soil horizons of a coniferous spodosol. Biol Fertil Soils 15:113–119Google Scholar
  71. Paulitz TC, Lindermann RG (1991) Mycorrhizal interactions with soil organisms. In: Arora DK, Mukerji KG, Knudsen GR (eds) Hand book of applied mycology, soil and plants. Marcel Dekker, New York, pp 77–129Google Scholar
  72. Perotto S, Bonfante P (1997) Bacterial associations with mycorrhizal fungi: close and distant friends in the rhizosphere. Trends Microbiol 5:496–501CrossRefGoogle Scholar
  73. Phillips DA, Ferris H, Cook DR, Strong DR (2003) Molecular control points in rhizosphere food webs. Ecology 84:816–826Google Scholar
  74. Porcel R, Barea JM, Ruiz-Lozana MJ (2003) Antioxidant activities in mycorrhizal soybean plants under drought stress and their possible relationship to the process of nodule senescence. New Phytol 157:135–143CrossRefGoogle Scholar
  75. Postgate JR (1998) Nitrogen fixation. Cambridge Univ Press, CambridgeGoogle Scholar
  76. Probanza A, Lucas Garcia JA, Ruiz Palomino M, Ramos B, Gutierrez Manero FJ (2002) Pinus pinea L. seedling growth and bacterial rhizosphere structure after inoculation with PGPR Bacilli (B.licheniformis CECT 5106 and B. pumillus CECT 5105). Appl Soil Ecol 20:75–84Google Scholar
  77. Raven JA, Edwards D (2001) Roots: evolutionary origins and biogeochemical significance. J Exp Bot 52:381–401Google Scholar
  78. Requena N, Jimenez I, Barea JM (1996) Bacteria-mycorrhiza interactions in land restoration. In: Azcon-Aguilar C, Barea JM (eds) Mycorrhizas in integrated systems: from genes to plant development. Office for publications of the European committees, Luxemburg, pp 657–660Google Scholar
  79. Requena N, Jimenez I, Toro M, Barea JM (1997) Interaction between plant growth promoting rhizobacteria (PGPR), arbuscular mycorrhizal fungi and Rhizobium spp. in the rhizosphere of Anthyllis cytisoides, a model legume for revegetation in Mediterranean semi-arid ecosystems. New Phytol 136:667–677CrossRefGoogle Scholar
  80. Requena N, Perez-Solis E, Azcon-Aguilar C, Jeffries P, Barea JM (2001) Management of indigenous plant-microbe symbiosis aids restoration of desertified ecosystem. Appl Environ Microbiol 67:495–498CrossRefGoogle Scholar
  81. Rinaldelli E, Mancuso S (1996) Response of young mycorrhizal and non-mycorrhizal plants of olive tree (Olea europaea L.) to saline conditions. I. Short-term electrophysiological and long-term vegetative salt effects. Adv Hort Sci 10:126–134Google Scholar
  82. Ruiz-Lozano JM, Collados C, Barea JM, Azcon R (2001) Arbuscular mycorrhizal symbiosis can alleviate drought-induced nodule senescence in soybean plants. New Phytol 151:493–502CrossRefGoogle Scholar
  83. Schreiner RP, Bethlenfalvay (1995) Mycorrhizal interactions in sustainable agriculture. Crit Rev Biotechnol 15:271–285Google Scholar
  84. Secilia J, Bagyaraj DJ (1987) Bacteria and actinomycetes associated with pot cultures of vesicular-arbuscular mycorrhizas. Can J Bot 33:1069–1073Google Scholar
  85. Sharif M (1999) The interaction among phosphate solubilizing bacteria, AM fungus and associative N2 fixing bacteria and their effects on growth and N and P uptake of pearl millet. Pakis J Soil Sci 16:53–62Google Scholar
  86. Sharma M, Mukerji KG (1999) VA mycorrhizae by control of fungal pathogens. In: Singh J, Aneja RK (eds) From ethnomycology to fungal biotechnology-exploiting fungi from natural resources for novel products. KA/PP, New York, pp 185–196Google Scholar
  87. Sharma M, Mittal N, Kumar RN, Mukerji KG (1998) Fungi: tool for plant diseases management. In: Varma A (ed) Microbes for health, wealth and sustainable environment. MPH, New Delhi, pp 101–154Google Scholar
  88. Shetty KG, Banks MK, Hetrick BA, Schwab (1994) Biological characterization of a southeast Kansas mining site. Water Air Soil Pollut 78:169–177CrossRefGoogle Scholar
  89. Sidhu OP, Behl HM (1997) Response of three Glomus species on growth of Prosopis juliflora Swartz at high levels. Symbiosis 23: 23–24Google Scholar
  90. Simpson D, Daft MJ (1990) Interaction between water stress and different mycorrhizal inocula on plant growth and mycorrhizal development in maize and sorghum. Plant Soil 121:179–186Google Scholar
  91. Singh R, Adholeya A, Mukerji KG (2000) Mycorrhiza in control of soil-borne pathogens. In: Mukerji KG, Chamola BP, Singh J (eds) Mycorrhizal biology. KA/PP, New York, pp 173–197Google Scholar
  92. Smith SE, Read DJ (1997) Mycorrhizal symbiosis. Academic Press, San Diego, 605 ppGoogle Scholar
  93. Spaink HP, Kondorosi A, Hooykass PJJ (1998) The rhizobiaceae. Kluwer, DordrechtGoogle Scholar
  94. Srivastava D, Kapoor R, Srivastava SK, Mukerji KG (1996) Vesicular arbuscular mycorrhiza: an overview. In: Mukerji KG (ed) Concepts in mycorrhizal research. Kluwer, Dordrecht, pp 1–39Google Scholar
  95. Stahl PD, Williams SE (1986) Oil shale process water affects activity of vesicular-arbuscular fungi and Rhizobium 4 years after application to soil. Soil Biol Biochem 18:451–455CrossRefGoogle Scholar
  96. Stahl PD, Williams SE, Christensen (1988) Effect of native vesicular arbuscular mycorrhizal fungi after severe soil disturbance. New Phytol 110:347–353Google Scholar
  97. Staley TE, Lawrence, EG, Nance EL (1992) Influence of a plant growth-promoting pseudomonad and vesicular-arbuscular mycorrhizal fungus on alfalfa and bridesfoot trefoil and nodulation. Biol Fertil Soils 14: 175–180CrossRefGoogle Scholar
  98. Stewart WN, Rothwell GW (1993) Paleobotany and the evolution of plants, 2nd edn. Cambridge Univ Press, CambridgeGoogle Scholar
  99. Subramanian S, Charest C (1995) Influence of arbuscular mycorrhizae on the metabolism of maize under drought stress. Mycorrhiza 5: 273–278Google Scholar
  100. Syvertsen JP, Graham JH (1990) Influence of vesicular arbuscular mycorrhizae and leaf age on net gas exchange of Citrus leaves. Plant Physiol 94:1424–1428Google Scholar
  101. Tarafdar JC (1995) Role of a VAmycorrhizal fungus on growth and water relations in wheat in presence of organic and inorganic phosphate. J Indian Soc Soil Sci 43:200–204Google Scholar
  102. Taylor TN, Remy W, Hass H, Kerp H (1995) Fossil arbuscular mycorrhizae from the early Devonian. Mycologia 87:560–573Google Scholar
  103. Toro M, Azcon R, Barea JM (1997) Improvement of arbuscular mycorrhizal development by inoculation with phosphate-solubilizing rhizobacteria to improve rock phosphate bioavailability (32P) and nutrient cycling. Appl Environ Microbiol 63:4408–4412Google Scholar
  104. Turnau K, Kottke I, Dexheimer J (1996) Toxic element filtering in Rhizopogon roseolus/Pinus sylvestris mycorrhizas collected from calamine dumps. Mycol Res 100:16–22CrossRefGoogle Scholar
  105. Tylka GL, Hussey RS, Roncadori RW (1991) Axenic germination of vesicular-arbuscular mycorrhizal fungi: effects of selected Streptomyces species. Phytopathology 81:754–659Google Scholar
  106. Van der Putten WH, Vet LEM, Harvey JA, Wackers FL (2001) Linking above-ground and below-ground multitrophic interactions of plants, herbivores, pathogens, and their antagonists. Trends Ecol Evol 16:547–554CrossRefGoogle Scholar
  107. Varma A, Verma A, Sudha S, Sahay N, Britta B, Franken P (1999) Piriformospora indica — a cultivable plant growth promoting root endophyte with similarities to arbuscular mycorrhizal fungi. Appl Environ Microbiol 65:2741–2744Google Scholar
  108. Vidal MT, Azcon-Aguilar C, Barea JM (1996) Effects of heavy metals (Zn, Cd and Cu) on arbuscular mycorrhiza formation. In: Azcon-Aguilar C, Barea JM (eds) Mycorrhiza in integrated systems: from genes to plant development. European Commission, EUR 16728, Luxembourg, pp 487–490Google Scholar
  109. Watanabe Y, Martini JEJ, Ohmoto H (2000) Geochemical evidence for terrestrial ecosystem 2.6 billion years ago. Nature 408:574–578CrossRefGoogle Scholar
  110. Weissenhorn I, Leyval C (1995) Root colonization of maize by a Cd-sensitive and a Cd-tolerant Glomus mosseae and cadmium uptake in sand culture. Plant Soil 175:233–238CrossRefGoogle Scholar
  111. Weissenhorn I, Leyval C, Berthelin J (1995) Bioavailability of heavy metal and abundance of arbuscular mycorrhiza in a soil polluted by atmospheric deposition from a smelter. Biol Fertil Soils 19:22–28CrossRefGoogle Scholar
  112. Weller DM, Thomashow LS (1994) Current challenges in introducing beneficial microorganisms into the rhizosphere. In: Gara FO, Dowling DN, Boesten B (eds) Molecular ecology of rhizosphere microorganisms biotechnology and the release of GMOs. VCH Verlagsgesellschaft, Weinheim, pp 1–13Google Scholar
  113. Whitelaw MA (2000) Growth promotion of plants inoculated with phosphate-solubilizing fungi. Adv Agron 69:99–151Google Scholar
  114. Wilson GWT, Hetrick BAD, Kitt DG (1989) Suppression of vesicular-arbuscular mycorrhizal fungus spore germination by non-sterile soil. Can J Bot 67:18–23Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Bhoopander Giri
    • 1
    • 2
  • Pham Huong Giang
    • 3
  • Rina Kumari
    • 4
  • Ram Prasad
    • 4
  • Minu Sachdev
    • 4
  • Amar P. Garg
    • 4
  • Ralf Oelmüller
    • 5
  • Ajit Varma
    • 1
    • 2
  1. 1.School of Life ScienceJawaharlal Nehru UniversityNew DelhiIndia
  2. 2.Amity Institute of Herbal and Microbial StudiesNoidaIndia
  3. 3.International Centre for Genetic Engineering and Biotechnology (UNO, Triesta, Italy)New DelhiIndia
  4. 4.Ch. Charan Singh UniversityMeerut, Uttar PradeshIndia
  5. 5.Institutes for General Botany and Plant PhysiologyUniversity of JenaJenaGermany

Personalised recommendations