The Effect of Biodiversity on Carbon Storage in Soils

  • G. Gleixner
  • C. Kramer
  • V. Hahn
  • D. Sachse
Part of the Ecological Studies book series (ECOLSTUD, volume 176)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Almendros G, Sanz J, Velasco F (1996) Signatures of lipid assemblages in soils under continental Mediterranean forests. Eur J Soil Sci 47:183–196CrossRefGoogle Scholar
  2. Balesdent J, Mariotti A (eds) (1996) Measurement of soil organic matter turnover using 13C natural abundance. Dekker, New YorkGoogle Scholar
  3. Banfield JF, Barker WW, Welch SA, Taunton A (1999) Biological impact on mineral dissolution: Application of the lichen model to understanding mineral weathering in the rhizosphere. Proc Natl Acad Sci USA 96:3404–3411CrossRefPubMedGoogle Scholar
  4. Barker WW, Banfield JF (1996) Biologically versus inorganically mediated weathering reactions — relationships between minerals and extracellular microbial polymers in lithobiontic communities. Chem Geol 132:55–69CrossRefGoogle Scholar
  5. Baudoin E, Benizri E, Guckert A (2003) Impact of artificial root exudates on the bacterial community structure in bulk soil and maize rhizosphere. Soil Biol Biochem 35:1183–1192CrossRefGoogle Scholar
  6. Boutton TW, Yamasaki S (eds) (1996) Mass spectrometry of soils. Dekker, New YorkGoogle Scholar
  7. Brassell SC, Eglinton G, Marlowe IT, Pflaumann U, Sarnthein M (1986) Molecular stratigraphy — a new tool for climatic assessment. Nature 320:129–133Google Scholar
  8. Catovsky S, Bradford MA, Hector A (2002) Biodiversity and ecosystem productivity: implications for carbon storage. Oikos 97:443–448CrossRefGoogle Scholar
  9. Christensen BT (1992) Physical fractionation of soil and organic matter in primary particle size and density separates. Adv Soil Sci 20:1–90Google Scholar
  10. Collins HP, Elliott ET, Paustian K, Bundy LC, Dick WA, Huggins DR, Smucker AJM, Paul EA (2000) Soil carbon pools and fluxes in long-term corn belt agroecosystems. Soil Biol Biochem 32:157–168CrossRefGoogle Scholar
  11. Coplen TB (1996) New guidelines for reporting stable hydrogen, carbon, and oxygen isotope-ratio data. Geochim Cosmochim Acta 60:3359–3360CrossRefGoogle Scholar
  12. Cranwell PA, Eglinton G, Robinson N (1987) Lipids of aquatic organisms as potential contributors to lacustrine sediments 2. Org Geochem 11:513–527CrossRefGoogle Scholar
  13. Eglinton G, Hamilton RJ (1967) Leaf epicuticular waxes. Science 156:1322–1334PubMedGoogle Scholar
  14. Eglinton G, Raphael RA, Gonzalez AG, Hamilton RJ (1962) Hydrocarbon constituents of wax coatings of plant leaves — a taxonomic survey. Phytochemistry 1:89–102Google Scholar
  15. Gleixner G, Schmidt HL (1998) On-line determination of group-specific isotope ratios in model compounds and aquatic humic substances by coupling pyrolysis to GC-CIRMS. In: Stankiewicz AB, van Bergen PF (eds) Nitrogen-containing macromolecules in the bio-and geosphere. ACS symposium series, vol 707. American Chemical Society, Washington, DC, pp 34–46Google Scholar
  16. Gleixner G, Danier HJ, Werner RA, Schmidt H-L (1993) Correlations between the 13C content of primary and secondary plant products in different cell compartments and that in decomposing basidomycetes. Plant Physiol 102:1287–1290PubMedGoogle Scholar
  17. Gleixner G, Bol R, Balesdent J (1999) Molecular insight into soil carbon turnover. Rapid Commun Mass Spectr 13:1278–1283Google Scholar
  18. Gleixner G, Czimczik CJ, Kramer C, Lühker B, Schmidt MWI (2001a) Plant compounds and their turnover and stabilization as soil organic matter. In: Schulze ED, Heimann M, Harrison S et al (eds) Global biogeochemical cycles in the climate system. Academic Press, San Diego, pp 201–215Google Scholar
  19. Gleixner G, Kracht O, Schmidt HL (2001b) Group specific isotope ratios of humic substances. In: Swift SS, Spark KM (eds) Understanding and managing organic matter in soils, sediments and waters. International Humic Substance Society, St. Paul, pp 195–201Google Scholar
  20. Gleixner G, Poirier N, Bol R, Balesdent J (2002) Molecular dynamics of organic matter in a cultivated soil. Org Geochem 33:357–366CrossRefGoogle Scholar
  21. Grayston SJ, Vaughan D, Jones D (1997) Rhizosphere carbon flow in trees, in comparison with annual plants — the importance of root exudation and its impact on microbial activity and nutrient availability. Appl Soil Ecol 5:29–56CrossRefGoogle Scholar
  22. Harrison AF, Harkeness DD, Rowland AP, Garnett JS, Bacon PJ (2000) Annual carbon and nitrogen fluxes in soils along the European forest transect, determined using the 14CBomb. In: Schulze ED (ed) Carbon and nitrogen cycling in European forest ecosystems, Ecological Studies, vol 142. Springer, Berlin Heidelberg New York, pp 237–256Google Scholar
  23. Hooper DU, Bignell DE, Brown VK, Brussaard L, Dangerfield JM, Wall DH, Wardle DA, Coleman DC, Giller KE, Lavelle P, Van der Putten WH, De Ruiter PC, Rusek J, Silver WL, Tiedje JM, Wolters V (2000) Interactions between aboveground and belowground biodiversity in terrestrial ecosystems: Patterns, mechanisms, and feedbacks. Bioscience 50:1049–1061Google Scholar
  24. Jenkinson DS, Hart PBS, Rayner JH, Parry LC (1987) Modelling the turnover of organic matter in long-term experiments at Rothamsted. INTECOL Bull 15:1–8Google Scholar
  25. Jobbagy EG, Jackson RB (2001) The distribution of soil nutrients with depth: Global patterns and the imprint of plants. Biogeochemistry 53:51–77Google Scholar
  26. Kaiser K, Guggenberger G (2003) Mineral surfaces and soil organic matter. Eur J. Soil Sci 54:219–236CrossRefGoogle Scholar
  27. Kinzig AP, Pacala SW, Tilman D (eds) (2001) Functional consequences of biodiversity. Empirical progress and theoretical extensions. Princeton Univ Press, PrincetonGoogle Scholar
  28. Kowalchuk GA, Buma DS, de Boer W, Klinkhamer PGL, van Veen JA (2002) Effects of above-ground plant species composition and diversity on the diversity of soil-borne microorganisms. Antonie Van Leeuwenhoek 81:509–520CrossRefPubMedGoogle Scholar
  29. Kracht O, Gleixner G (2000) Isotope analysis of pyrolysis products from Sphagnum peat and dissolved organic matter from bog water. Org Geochem 31:645–654CrossRefGoogle Scholar
  30. Langley JA, Hungate BA (2003) Mycorrhizal controls on belowground litter quality. Ecology 84:2302–2312Google Scholar
  31. Lichtfouse E, Chenu C, Baudin F, Leblond C, Da Silva M, Behar F, Derenne S, Largeau C, Wehrung P, Albrecht P (1998) A novel pathway of soil organic matter formation by selective preservation of resistant straight-chain biopolymers — chemical and isotope evidence. Org Geochem 28:411–415CrossRefGoogle Scholar
  32. Loreau M, Naeem S, Inchausti P (eds) (2002) Biodiversity and ecosystem functioning. Synthesis and perspectives. Oxford Univ Press, OxfordGoogle Scholar
  33. Meyer O (1993) Functional groups of microorganisms. In: Schulze ED, Mooney HA (eds) Biodiversity and ecosystem function, Ecological Studies, vol 99. Springer, Berlin Heidelberg New York, pp 67–96Google Scholar
  34. Neff JC, Townsend AR, Gleixner G, Lehman SJ, Turnbull J, Bowman WD (2002) Variable effects of nitrogen additions on the stability and turnover of soil carbon. Nature 419:915–917CrossRefPubMedGoogle Scholar
  35. O’Leary MH (1981) Carbon isotope fractionation in plants. Phytochemistry 20:553–567Google Scholar
  36. Parton WJ, Schimel DS, Cole CV, Ojima DS (1987) Analysis of factors controlling soil organic matter levels in great plains grassland. Soil Sci Soc Am J 51:1173–1179CrossRefGoogle Scholar
  37. Paul EA, Collins HP, Leavitt SW (2001) Dynamics of resistant soil carbon of midwestern agricultural soils measured by naturally occurring 14C abundance. Geoderma 104:239–256CrossRefGoogle Scholar
  38. Riederer M (1989) The cuticles of conifers: structure, composition and transport properties. In: Schulze ED, Lange OL, Oren R (eds) Forest decline and air pollution, Ecological Studies, vol 77. Springer, Berlin Heidelberg New York, pp 157–192Google Scholar
  39. Rieley G, Collier RJ, Jones DM, Eglinton G, Eakin PA, Fallick AE (1991) Sources of sedimentary lipids deduced from stable carbon isotope analyses of individual compounds. Nature 352:425–427CrossRefGoogle Scholar
  40. Rothe J, Gleixner G (2000) Do stable isotopes reflect the food web development in regenerating ecosystems? Isotopes Environ Health Stud 36:285–301PubMedGoogle Scholar
  41. Rothe A, Binkley D (2001) Nutritional interactions in mixed species forests: a synthesis. Can J For Res 31:1855–1870CrossRefGoogle Scholar
  42. Schimel DS, House JI, Hibbard KA, Bousquet P, Ciais P, Peylin P, Braswell BH, Apps MJ, Baker D, Bondeau A, Canadell J, Churkina G, Cramer W, Denning AS, Field CB, Friedlingstein P, Goodale C, Heimann M, Houghton RA, Melillo JM, Moore B, Murdiyarso D, Noble I, Pacala SW, Prentice IC et al (2001) Recent patterns and mechanisms of carbon exchange by terrestrial ecosystems. Nature 414:169–172CrossRefPubMedGoogle Scholar
  43. Schlesinger WH, Lichter J (2001) Limited carbon storage in soil and litter of experimental forest plots under increased atmospheric CO2. Nature 411:466–469CrossRefPubMedGoogle Scholar
  44. Schmidt H-L, Gleixner G (1998) Carbon isotope effects on key reactions in plant metabolism and 13C-patterns in natural compounds. In: Griffiths H (ed) Stable isotopes: integration in biological, ecological and geochemical processes. BIOS, Oxford, pp 13–26Google Scholar
  45. Schulze ED (2000) Carbon and nitrogen cycling in European forest ecosystems. Ecological Studies, vol 142. Springer, Berlin Heidelberg New YorkGoogle Scholar
  46. Schwark L, Zink K, Lechterbeck J (2002) Reconstruction of postglacial to early Holocene vegetation history in terrestrial Central Europe via cuticular lipid biomarkers and pollen records from lake sediments. Geology 30:463–466CrossRefGoogle Scholar
  47. Spooner N, Rieley G, Collister JW, Lander M, Cranwell PA, Maxwell JR (1994) Stable carbon isotopic correlation of individual biolipids in aquatic organisms and a lake bottom sediment. Org Geochem 21:823–827Google Scholar
  48. Trojanowski J, Haider K, Huettermann A (1984) Decomposition of carbon-14-labeled lignin holocellulose and lignocellulose by mycorrhizal fungi. Arch Microbiol 139:202–206CrossRefGoogle Scholar
  49. Van Bergen PF, Bull ID, Poulton PR, Evershed RP (1997) Organic geochemical studies of soils from the Rothamsted classical experiments. 1. Total lipid extracts, solvent insoluble residues and humic acids from Broadbalk wilderness. Org Geochem 26:117–135Google Scholar
  50. Wang Y, Amundson R, Trumbore S (1996) Radiocarbon dating of soil organic matter. Quat Res 45:282–288CrossRefGoogle Scholar
  51. Wardle DA, Yeates GW, Williamson W, Bonner KI (2003) The response of a three trophic level soil food web to the identity and diversity of plant species and functional groups. Oikos 102:45–56CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • G. Gleixner
  • C. Kramer
  • V. Hahn
  • D. Sachse

There are no affiliations available

Personalised recommendations