Fractions: Continued, Egyptian and Farey

Part of the Springer Series in Information Sciences book series (SSINF, volume 7)


Continue Fraction Irrational Number Fibonacci Number Golden Ratio Continue Fraction Expansion 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Chapter 5

  1. 5.1
    C. D. Olds: Continued Fractions (Random House, New York 1963)MATHGoogle Scholar
  2. 5.2
    H. S. Wall: Analytic Theory of Continued Fractions (Van Nostrand, Princeton 1948)MATHGoogle Scholar
  3. 5.3
    A. N. Khovanskii: The Application of Continued Fractions and Their Generalizations to Problems in Approximation Theory (Noordhoff, Groningen 1963)Google Scholar
  4. 5.4
    A. Y. Khinchin: Continued Fractions (University of Chicago Press, Chicago 1964)MATHGoogle Scholar
  5. 5.5
    F. D. M. Haddani: Phys. Rev. Lett. 51, 605–607 (1983)MathSciNetADSCrossRefGoogle Scholar
  6. 5.6
    K. Ikeda, M. Mitsumo: Phys. Rev. Lett. 53 1340–1343 (1984)CrossRefADSGoogle Scholar
  7. 5.7
    C. J. Bouwkamp, A. J. Duijvestijn, P. Medema: Tables relating to simple squared rectangles (Dept. of Mathematics and Mechanics, Technische Hogeschool, Eindhoven 1960)MATHGoogle Scholar
  8. 5.8
    V. E. Hoggatt: Fibonacci and Lucas Numbers (Houghton Mifflin, Boston 1969)MATHGoogle Scholar
  9. 5.9
    P. H. Richter, R. Schranner: Leaf arrangment. Naturwissenschaften 65, 319–327 (1978)ADSCrossRefGoogle Scholar
  10. 5.10
    M. Eigen: “Goethe und das Gestaltproblem in der modernen Biologie,” in H. Rössner (ed.): Rückblick in die Zukunft (Severin und Siedler, Berlin 1981)Google Scholar
  11. 5.11
    O. Ore: Number Theory and Its History (McGraw-Hill, New York 1948)MATHGoogle Scholar
  12. 5.12
    A. Koenig (personal communication)Google Scholar
  13. 5.13
    W. Gellert, H. Küstner, M. Hellwich, H. Kästner (eds.): The VNR Concise Encyclopedia of Mathematics (Van Nostrand Reinhold, New York 1977)Google Scholar
  14. 5.14
    L. K. Hua, Y. Wang: Applications of Number Theory to Numerical Analysis IX (Springer, Berlin, Heidelberg, New York 1981)MATHGoogle Scholar
  15. 5.15
    J. C. Lagarias, A. M. Odlyzko: Solving “low-density” subset sum problems. J. Association of Computing Machinery 32, 229–246 (1985)MathSciNetMATHGoogle Scholar
  16. 5.16
    R. L. Graham (personal communication)Google Scholar
  17. 5.17
    R. K. Guy: Unsolved Problems in Intuitive Mathematics, Vol. I, Number Theory (Springer, Berlin, Heidelberg, New York 1981)Google Scholar
  18. 5.18
    M. Gardner: Mathematical games. Sci. Am. 239, No. 4, 22–26 (1978)CrossRefGoogle Scholar
  19. 5.19
    R. L. Graham: A theorem on partitions. J. Austral. Math. 4, 435–441 (1963)CrossRefGoogle Scholar
  20. 5.20
    E. Landau: Elementary Number Theory (Chelsea, New York 1958)MATHGoogle Scholar
  21. 5.21
    E. H. Neville: The Farey Series of Order 1025 (Cambridge University Press, Cambridge 1950)MATHGoogle Scholar
  22. 5.22
    C. M. Rader: Recovery of undersampled periodic waveforms. IEEE Trans. ASSP-25, 242–249 (1977)Google Scholar
  23. 5.23
    T. L. Mac Donald: Astronomische Nachrichten 241, 31 (1931)MATHADSCrossRefGoogle Scholar
  24. 5.24
    M. Gardner: Wheels, Life and Other Mathematical Amusements (Freeman, New York 1983)MATHGoogle Scholar
  25. 5.25
    R. T. Gregory and E. V. Krishnamurthy: Methods and Applications of Error-Free Computation (Springer, New York 1984)MATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Personalised recommendations