Self-Similarity, Fractals, Deterministic Chaos and a New State of Matter

Part of the Springer Series in Information Sciences book series (SSINF, volume 7)


Strange Attractor Golden Ratio Hilbert Curve Fourier Amplitude Spectrum Weierstrass Function 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Chapter 30

  1. 30.1
    N. J. A. Sloane: AHandb ook of Integer Sequences (Academic Press, Orlando, FL 1973)Google Scholar
  2. 30.2
    D. Shechtman, I. Blech, D. Gratias and J. W. Cahn: Metallic phase with longrange orientational order and no translational symmetry. Phys. Rev. Lett. 53, 1951–1953 (1984)CrossRefADSGoogle Scholar
  3. 30.3
    M. Gardner: Extraordinary nonperiodic tiling that enriches the theory of tiles. Sci. Am. 236, 110–121 (Jan. 1977)CrossRefGoogle Scholar
  4. 30.4
    D. Levine and P. J. Steinhardt: Quasicrystals: A new class of ordered structures. Phys. Rev. Lett. 53, 2477–2480 (1984)CrossRefADSGoogle Scholar
  5. 30.5
    B. Mandelbrot: The Fractal Geometry of Nature (Freeman, San Francisco 1983)Google Scholar
  6. 30.6
    T. A. Witten and L. M. Sander: Phys. Rev. Lett. 47, 1400–1403 (1981); Phys. Rev. B7, 5686–5697 (1983)CrossRefADSGoogle Scholar
  7. 30.
    7 C. Nicolis and G. Nicolis: Gibt es einen Klima-Attraktor? Phys. Blätter 41, 5–9 (1985)Google Scholar
  8. 30.8
    E. Basar: Toward a physical approach to integrative physiology. I. Brain dynamics and physical causality. Am. J. Physiol. 245 (Regulatory Integrative Comp. Physiol. 14), R510–R533 (1983); see also A. Abraham, A. Mandel and D. Farmer, in Proceedings Nonlinear Functions of the Brain (Santa Barbara 1982)Google Scholar
  9. 30.9
    M. R. Schroeder: Linear prediction, entropy and signal analysis. IEEE ASSP Magazine 1, 3–11 (July 1984)CrossRefGoogle Scholar
  10. 30.10
    M. J. Feigenbaum: Universal behavior in nonlinear systems. Los Alamos Science 1, 4–27 (1981); see also M. J. Feigenbaum: Quantitative universality for a class of nonlinear transformation. J. Statistical Physics 19, 25–52 (1978)MathSciNetGoogle Scholar
  11. 30.11
    M. Schroeder: Fractals, Chaos, Power Laws: Minutes from an Infinite Paradise (Freeman, New York 1991)MATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Personalised recommendations