Number Theory, Randomness and “Art”

Part of the Springer Series in Information Sciences book series (SSINF, volume 7)


Number Theory Musical Note Complex Cube Recursive Construction Binary Property 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Chapter 29

  1. 29.1
    M. R. Schroeder: Images from computers and microfilm plotters. Comm. ACM 12, 95–101 (1969). See also IEEE Spectrum, March 1969, pp. 66–78CrossRefGoogle Scholar
  2. 29.2
    M. R. Schroeder: A simple function and its Fourier transform. Math. Intelligencer 4, 158–161 (1982)MathSciNetCrossRefGoogle Scholar
  3. 29.3
    M. R. Schroeder: Number theory in physics, engineering and art. Interdisciplinary Sci. Rev. 6, No. 3, 239–248 (1980)MathSciNetGoogle Scholar
  4. 29.4
    M. R. Schroder: Fractal, Chaos, Power Laws (Freeman, New York 1991)Google Scholar
  5. 29.5
    J. C. Risset: Proc. 7th Int. Congr. Acoustics 3, 613 (1971)Google Scholar
  6. 29.6
    M. R. Schroeder: J. Acoust. Soc. Am. 79, 186 (1986)ADSCrossRefGoogle Scholar
  7. 29.7
    M. R. Schroeder: Nature 325, 765 (1987)CrossRefADSGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Personalised recommendations