Spectral Properties of Galois Sequences

Part of the Springer Series in Information Sciences book series (SSINF, volume 7)


Speech Recognition Period Length Primitive Root Corrugate Surface Radar Echo 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Chapter 26

  1. 26.1
    S. W. Golomb: Shift Register Sequences (Holden-Day, San Francisco 1967)MATHGoogle Scholar
  2. 26.
    W. Stahnke: Primitive binary polynomials. Math. Comp. 27, 977–980 (1973)MathSciNetMATHCrossRefGoogle Scholar
  3. 26.3
    E. R. Berlekamp: Algebraic Coding Theory (McGraw-Hill, New York 1968)MATHGoogle Scholar
  4. 26.4
    F. J. MacWilliams, N. J. A. Sloane: The Theory of Error-Correcting Codes (North-Holland, Amsterdam 1978)Google Scholar
  5. 26.5
    M. R. Schroeder (ed.): Speech and Speaker Recognition (S. Karger, Basel 1985)Google Scholar
  6. 26.6
    M. R. Schroeder: Integrated-impulse method of measuring sound decay without using impulses. J. Acoust. Soc. Am. 66, 497–500 (1979)ADSCrossRefGoogle Scholar
  7. 26.7
    A. R. Møller: Use of stochastic signals in evaluation of the dynamic properties of a neuronal system. Scand. J. Rehab. Med., Suppl. 3, 37–44 (1974)Google Scholar
  8. 26.8
    I. I. Shapiro, G. H. Pettengill, M. E. Ash, M. L. Stone, W. B. Smith, R.P. Ingalls, R. A. Brockelman: Fourth test of general relativity. Phys. Rev. Lett. 20, 1265–1269 (1968)ADSCrossRefGoogle Scholar
  9. 26.
    9 T. Rothman: The short life of Evariste Galois. Sci. Am. 246, No. 4, 136–149 (1982)MathSciNetCrossRefGoogle Scholar
  10. 26.10
    M. R. Schroeder, D. Gottlob, K. F. Siebrasse: Comparative study of European concert halls. J. Acoust. Soc. Am. 56, 1195–1201 (1974)ADSCrossRefGoogle Scholar
  11. 26.11
    M. R. Schroeder: Binaural dissimilarity and optimum ceilings for concert halls: More lateral sound diffusion. J. Acoust. Soc. Am. 65, 958–963 (1979)ADSCrossRefGoogle Scholar
  12. 26.12
    J. W. Goodman: Introduction to Fourier Optics (McGraw-Hill, New York 1968)Google Scholar
  13. 26.13
    M. Born, E. Wolf: Principles of Optics (Pergamon, Oxford 1970)Google Scholar
  14. 26.14
    S. H. van Lint, F. J. MacWilliams, N. J. A. Sloane: On Pseudo-Random Arrays. SIAM J. Appl. Math. 36, 62–72 (1979)MathSciNetMATHCrossRefGoogle Scholar
  15. 26.15
    M. R. Schroeder: Constant-amplitude antenna arrays with beam patterns whose lobes have equal magnitudes. Archiv für Elektronik und Übertragungstechnik (Electronics and Communication) 34, 165–168 (1980)Google Scholar
  16. 26.16
    G. Hoffmann de Visme: Binary Sequences (The English University Press, London 1971)Google Scholar
  17. 26.17
    F. J. MacWilliams: The structure and properties of binary cyclic alphabets. Bell Syst. Tech. J. 44, 303–332 (1965)MathSciNetMATHGoogle Scholar
  18. 26.18
    F. J. MacWilliams: A table of primitive binary idempotents of odd length. IEEE Trans. IT 25, 118–121 (1979)MathSciNetMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Personalised recommendations