The Chinese Remainder Theorem and Simultaneous Congruences

Part of the Springer Series in Information Sciences book series (SSINF, volume 7)


Fast Fourier Transform Discrete Fourier Transformation Primitive Root Chinese Remainder Theorem Itive Root 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Chapter 16

  1. 16.1
    L. H. Hua: Introduction to Number Theory (Springer, Berlin, Heidelberg, New York 1982)Google Scholar
  2. 16.2
    C. E. Shannon (personal communication)Google Scholar
  3. 16.3
    J. H. McClellan, C. M. Rader: Number Theory in Digital Signal Processing (Prentice-Hall, Englewood Cliffs, NJ 1979)Google Scholar
  4. 16.4
    H. J. Nussbaumer: Fast Fourier Transform and Convolution Algorithms (Springer, Berlin, Heidelberg, New York 1981)Google Scholar
  5. 16.5
    B. Gold, C. M. Rader, A. V. Oppenheim, T. G. Stockham: Digital Processing of Signals (McGraw-Hill, New York 1969)Google Scholar
  6. 16.6
    J. W. Goodman: Introduction to Fourier Optics (McGraw-Hill, New York 1968)Google Scholar
  7. 16.7
    C. M. Rader: Discrete Fourier transforms when the number of data samples is prime. Proc. IEEE 56, 1107–1108 (1976)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Personalised recommendations