Advertisement

Introduction

Part of the Springer Series in Information Sciences book series (SSINF, volume 7)

Keywords

Continue Fraction Code Word Irrational Number Winning Strategy Fibonacci Number 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Chapter 1

  1. 1.1
    T. M. Apostol: Introduction to Analytic Number Theory (Springer, Berlin, Heidelberg, New York 1976)Google Scholar
  2. 1.2
    I. Asimov: Asimov on Numbers (Doubleday, Garden City, NY, 1977)Google Scholar
  3. 1.3
    A. O. L. Atkin, B. J. Birch (eds.): Computers in Number Theory (Academic, London 1971)Google Scholar
  4. 1.4
    E. R. Berlekamp, J. H. Conway, R. K. Guy: Winning Ways (Academic, London 1981)Google Scholar
  5. 1.5
    W. Kaufmann-Bühler: Gauss. A Biographical Study (Springer, Berlin, Heidelberg, New York 1981)Google Scholar
  6. 1.6
    P. J. Davis: The Lore of Large Numbers (Random House, New York 1961)Google Scholar
  7. 1.7
    L. E. Dickson: History of the Theory of Numbers, Vols. 1–3 (Chelsea, New York 1952)Google Scholar
  8. 1.8
    U. Dudley: Elementary Number Theory (Freeman, San Francisco 1969)Google Scholar
  9. 1.9
    C. F. Gauss: Disquisitiones Arithmeticae [English transl. by A. A. Clarke, Yale University Press, New Haven 1966]Google Scholar
  10. 1.10
    W. Gellert, H. Küstner, M. Hellwich, H. Kästner (eds.) The VNR Concise Encyclopedia of Mathematics (Van Nostrand Reinhold, New York 1977)Google Scholar
  11. 1.11
    R. K. Guy: Unsolved Problems in Intuitive Mathematics, Vol. I, Number Theory (Springer, Berlin, Heidelberg, New York 1981)Google Scholar
  12. 1.12
    H. Halberstam, C. Hooley (eds.): Progress in Analytic Number Theory, Vol. I (Academic, London 1981)Google Scholar
  13. 1.13
    G. H. Hardy: AMathematician’s Apology (Cambridge University Press, Cambridge 1967)Google Scholar
  14. 1.14
    G. H. Hardy, E. M. Wright: An Introduction to the Theory of Numbers, 4th ed. (Clarendon, Oxford 1960)Google Scholar
  15. 1.15
    L. H. Hua: Introduction to Number Theory (Springer, Berlin, Heidelberg, New York 1982)Google Scholar
  16. 1.16
    K.-H. Indlekofer: Zahlentheorie, Uni-Taschenbücher 688 (Birkhäuser, Basel 1978)Google Scholar
  17. 1.17
    K. Ireland, M. Rosen: A Classic al Introduction to Modern Number Theory (Springer, New York 1990)Google Scholar
  18. 1.18
    H. Minkowski: Diophantische Approximationen (Teubner, Leipzig 1907; reprinted by Physica, Würzburg 1961)Google Scholar
  19. 1.19
    T. Nagell: Introduction to Number Theory (Wiley, New York 1951)Google Scholar
  20. 1.20
    C. S. Ogilvy: Tomorrow’s Math (Oxford University Press, Oxford 1962)Google Scholar
  21. 1.21
    O. Ore: Number Theory and Its History (McGraw-Hill, New York 1948)Google Scholar
  22. 1.22
    H. Rademacher: Lectures on Elementary Number Theory (Blaisdell, New York 1964)Google Scholar
  23. 1.23
    H. Rademacher, O. Toeplitz: The Equipment of Mathematics (Princeton University Press, Princeton 1957)Google Scholar
  24. 1.24
    A. Scholz, B. Schoenberg: Einführung in die Zahlentheorie, Sammlung Göschen 5131 (Walter de Gruyter, Berlin 1973)Google Scholar
  25. 1.25
    C. E. Shannon: Communication theory of secrecy systems. Bell Syst. Tech. J. 28, 656–715 (1949)MathSciNetGoogle Scholar
  26. 1.26
    W. Sierpiński: 250 Problems in Elementary Number Theory (American Elsevier, New York 1970)Google Scholar
  27. 1.27
    J. V. Uspensky, M. A. Heaslet: Elementary Number Theory (McGraw-Hill, New York 1939)Google Scholar
  28. 1.28
    D. J. Winter: The Structure of Fields, Graduate Texts in Mathematics, Vol. 16 (Springer, Berlin, Heidelberg, New York 1974)Google Scholar
  29. 1.23
    H. Rademacher, O. Toeplitz: The Equipment of Mathematics (Princeton University Press, Princeton 1957)Google Scholar
  30. 1.24
    A. Scholz, B. Schoenberg: Einführung in die Zahlentheorie, Sammlung Göschen 5131 (Walter de Gruyter, Berlin 1973)Google Scholar
  31. 1.25
    C. E. Shannon: Communication theory of secrecy systems. Bell Syst. Tech. J. 28, 656–715 (1949)MathSciNetGoogle Scholar
  32. 1.26
    W. Sierpiński: 250 Problems in Elementary Number Theory (American Elsevier, New York 1970)Google Scholar
  33. 1.27
    J. V. Uspensky, M. A. Heaslet: Elementary Number Theory (McGraw-Hill, New York 1939)Google Scholar
  34. 1.28
    D. J. Winter: The Structure of Fields, Graduate Texts in Mathematics, Vol. 16 (Springer, Berlin, Heidelberg, New York 1974)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Personalised recommendations