Effects of Temperature Changes on Survival and Growth in Mountain Birch Populations

  • O. Skre
  • J. Nilsen
  • M. Naess
  • B. Igeland
  • K. Taulavuori
  • E. Taulavuori
  • K. Laine
Part of the Ecological Studies book series (ECOLSTUD, volume 180)


Winter Temperature Mountain Birch Frost Hardiness Winter Dormancy Spring Frost 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ågren GI (1985) Limits to plant production. J Theor Biol 113:89–92Google Scholar
  2. Anamthawat-Jonsson K, Tomasson T (1990) Cytogenetics of hybrid introgression in Icelandic birch. Hereditas 11:65–70Google Scholar
  3. Billings WD, Godfrey PJ, Chabot BF, Bourque DF (1971) Metabolic acclimation to temperature in arctic and alpine ecotypes of Oxyria digyna. Bull Ecol Soc Am 49:68–69Google Scholar
  4. Blöndal S (1993) Socoieconomic importance of forests in Iceland. In: Alden J, Mastrantonio JL, Ødum S (eds) Forest development in cold climates. Plenum Press, New York, pp 1–14Google Scholar
  5. Callaghan TV (1993) Biospheric feedback mechanisms to a changing climate in the North. In: Holten JI, Oechel WC (eds) Impacts of climatic change on natural ecosystems with emphasis on boreal and arctic/alpine areas. NINA/DN, Trondheim, Norway, pp 9–11Google Scholar
  6. Chapin FS III (1979) Nutrient uptake and utilization by tundra plants. In: Underwood LS, Tieszen LL, Callahan AB, Folk GE (eds) Comparative mechanisms of cold adaptation. Academic Press, New York, pp 215–234Google Scholar
  7. Chapin FS III (1980) The mineral nutrition of wild plants. Annu Rev Ecol Syst 11:238–260CrossRefGoogle Scholar
  8. Crawford RMM (1989) Studies in plant survival. Studies in ecology, vol 11. Blackwell, Oxford, 296 ppGoogle Scholar
  9. Crawford RMM, Jeffree CE, Rees WG (2002) Paludification and forest retreat in northern oceanic environments. Ann Bot 90:1–14Google Scholar
  10. Elkington TT (1968) Introgressive hybridization between Betula nana L. and B. pubescens Ehrh. in northwest Iceland. New Phytol 67:44–63Google Scholar
  11. Håbjørg A (1972) Effects of photoperiod and temperature on growth and development of three latitudinal and three altitudinal populations of Betula pubescens. Ehrh. Meld Nor LandbrHøgsk 51(2):1–27Google Scholar
  12. Hänninen H (1996) Effects of climatic warming on northern trees: testing the frost damage ypothesis with meteorological data from provenance transfer experiments. Scand J For Res 11:17–25CrossRefGoogle Scholar
  13. Hall DO, Scurlock JMO, Bolhar-Nordenkampf HR, Leegood RC, Long SP (1993) Photosynthesis and production in a changing environment. Chapman and Hall, London, 464 ppGoogle Scholar
  14. Heide OM (1993) Daylength and thermal time responses of budburst during dormancy release in some northern deciduous trees. Physiol Plant 88:531–540CrossRefGoogle Scholar
  15. Huntley B (1997) The responses of vegetation to past and future climate changes. In: Oechel WC, Callaghan TV, Gilmanov TI, Holten JI, Maxwell B, Molau U, Sveinbjörnsson B (eds) Global change and arctic terrestrial ecosystems. Ecological studies 124. Springer, Berlin Heidelberg New York, pp 290–311Google Scholar
  16. Körner C (1989) The nutritional status of plants from high altitudes. A worldwide comparison. Oecologia 81:379–391Google Scholar
  17. Larsen JB (1976) Untersuchungen über die Frostempfindlichkeit von Douglasienherkünften und über den Einfluss der Nährstoffversorgung auf die Frostresistenz der Douglasie. Forst Holz Wirtsch 31(15):299–302Google Scholar
  18. Mäenpää E, Skre O, Malila E, Partanen R, Wielgolaski FE, Laine K (2001) Carbon economy in birch-dominated ecosystem species in northern Fennoscandia. In: Wielgolaski FE (ed) Nordic mountain birch ecosystems. MAB series, vol 27. UNESCO, Paris and Parthenon, New York, pp 93–114Google Scholar
  19. Misund S, Nilsen J, Junttila O (2001) Studies of apical growth cessation in dwarf birch (Betula nana L.) from Spitzbergen and northern Norway. In: Wielgolaski FE (ed) Nordic mountain birch ecosystems. MAB series, vol 27. Parthenon, New York, pp 195–206Google Scholar
  20. Mooney HA, Billings WD (1961) The annual carbohydrate cycle of alpine plants as related to growth. Am J Bot 47:594–598Google Scholar
  21. Mork E (1957) Om frøkvalitet og frøproduksjon hos furu i Hirkjølen (in Norwegian). Meddr Norske SkogforsVes 15:349–379Google Scholar
  22. Mortensen LM (1998) Effects of elevated CO2 concentration on growth of Betula pubescens Ehrh. in different climatic conditions. Scand J For Res 13:197–203Google Scholar
  23. Mousseau M (1993) Effects of elevated CO2 on growth, photosynthesis and respiration of sweet chestnut (Castanea sativa Mill.). In: Rozema J, Lambers H, van der Geijn SC, Cambridge ML (eds) CO2 and biosphere. Kluwer, Dordrecht, pp 413–420Google Scholar
  24. Murray MB, Smith RI, Leith ID, Fowler D, Lee HSJ, Friend AD, Jarvis PG (1994) Effects of elevated CO2, nutrition and climatic warm wind on bud phenology in Sitka spruce (Picea sitchensis) and their impact on the risk of frost damage. Tree Physiol 14:691–706PubMedGoogle Scholar
  25. Myking T, Heide OM.866 (1995) Dormancy release and chilling requirements of buds of latitudinal ecotypes of Betula pendula and B. pubescens. Tree Physiol 15:697–704PubMedGoogle Scholar
  26. Partanen R, Wielgolaski FE, Malila E, Mäenpää E, Laine K (2001). Inorganic nutrient content in plant species of a mountain birch dominated ecosystem in northern Fennoscandia. In: Wielgolaski FE (ed) Nordic mountain birch ecosystems. MAB Series, vol 27. UNESCO, Paris and Parthenon, New York, pp 155–172Google Scholar
  27. Ritchie GA (1982) Carbohydrate reserves and root growth potential in Douglas-fir seedlings before and after cold storage. Can J For Res 12(4):905–912Google Scholar
  28. Skre O (1988) Frost resistance in forest trees-a literature survey. Medd Nor Inst Skogforsk 40(9):1–35Google Scholar
  29. Skre O (1991) Growth experiments with seedlings of mountain birch (Betula pubescens Ehrh.) and lowland birch (Betula pendula Roth.) grown at varying temperature, light and daylength. Medd Nor Inst Skogforsk 44(6):1–41Google Scholar
  30. Skre O (1993a) Growth of mountain birch (Betula pubescens Ehrh.) in response to changing temperature. In: Alden J, Mastrantonio JL, Ødum S (eds) Forest development in cold climates. Plenum Press, New York, pp 65–78Google Scholar
  31. Skre O (1993b) Effects of altitude on growth in ecotypes of mountain birch (Betula pubescens Ehrh.) and lowland birch (Betula pendula Roth.) seedlings. Medd Nor Inst Skogforsk 45(11):1–30Google Scholar
  32. Skre O (2001) Temperature adaptations in growth and carbon balance in relation to nutrient level in seedlings of Betula pubescens from different populations in Scandinavia. Iceland For Assoc Skogræktarritid 2001(1):156–162Google Scholar
  33. Skre O, Naess M (1999) CO2 and winter temperature effects on white birch. Chemosphere Global Change Science 1:469–483Google Scholar
  34. Taulavuori K, Taulavuori E, Niinimaa A, Laine K (2001) Acceleration of frost hardening in Vaccinium vitis-idaea (L.) by nitrogen fertilization. Oecologia 127:321–323CrossRefGoogle Scholar
  35. Taulavuori K, Taulavuori E, Skre O, Nilsen J, Igeland B, Laine KM (2004) Dehardening of mountain birch (Betula pubescens ssp. czerepanovii) ecotypes at elevated winter temperatures. New Phytol 162:427–436CrossRefGoogle Scholar
  36. Thornley JHM (1972) A balanced quantitative model for root:shoot ratios in vegetative plants. Ann Bot 36:431–444bm]357 370Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • O. Skre
    • 1
  • J. Nilsen
    • 2
  • M. Naess
    • 3
  • B. Igeland
    • 4
  • K. Taulavuori
    • 5
  • E. Taulavuori
    • 5
  • K. Laine
    • 6
  1. 1.Skogforsk BergenFanaNorway
  2. 2.Department of BiologyUniversity of TromsøTromsøNorway
  3. 3.Interpro ASKokstadNorway
  4. 4.Department of BiologyUniversity of TromsøTromsøNorway
  5. 5.Institute of BiologyUniversity of OuluOuluFinland
  6. 6.Botanical GardensUniversity of OuluOuluFinland

Personalised recommendations