Image States on the LiF(001)-(1×1) Insulator Surface

  • Michael Rohlfing
Conference paper


We discuss image potential states on an insulator surface, LiF(001)-(1×1), within ab-initio many-body perturbation theory. The image potential states originate from the interaction of electrons outside the surface with polarization charges inside the substrate. They are responsible for characteristic features in the electron energy loss spectrum of the material. The onset of excitation energies is at 9.2 eV, which is several eV lower than the bulk excitations.


Image State Vacuum Level Electron Energy Loss Spectrum Negative Electron Affinity Image Potential State 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    G. Roy, G. Singh, and T.E. Gallon, Surf. Sci. 152/153, 1042 (1985); T.E. Gallon, Surf. Sci. 206, 365 (1988).CrossRefGoogle Scholar
  2. 2.
    T. Mabuchi, Journal of the Physical Society of Japan 57, 241 (1988).CrossRefGoogle Scholar
  3. 3.
    P. Wurz et al., Phys. Rev. Lett. 43, 6729 (1991).Google Scholar
  4. 4.
    H. Tatewaki and E. Miyoshi, Surf. Sci. 327, 129 (1995).CrossRefGoogle Scholar
  5. 5.
    H. Winter et al., Journal of Physics B 35, 3315 (2002).CrossRefGoogle Scholar
  6. 6.
    M. Rohlfing, N.-P. Wang, P. Krüger, and J. Pollmann, Phys. Rev. Lett. 91, 256802 (2003).CrossRefGoogle Scholar
  7. 7.
    M.S. Hybertsen and S.G. Louie, Phys. Rev. Lett. 55, 1418 (1985).CrossRefGoogle Scholar
  8. 8.
    M. Rohlfing, P. Krüger, and J. Pollmann, Phys. Rev. Lett. 75, 3489 (1995).CrossRefGoogle Scholar
  9. 9.
    S. Albrecht, L. Reining, R. Del Sole, and G. Onida, Phys. Rev. Lett. 80, 4510 (1998).CrossRefGoogle Scholar
  10. 10.
    L.X. Benedict, E.L. Shirley, and R.B. Bohn, Phys. Rev. Lett. 80, 4514 (1998).CrossRefGoogle Scholar
  11. 11.
    M. Rohlfing and S.G. Louie, Phys. Rev. Lett. 81, 2312 (1998); Phys. Rev. B 62, 4927 (2000).CrossRefGoogle Scholar
  12. 12.
    D.M. Roessler and W.C. Walker, J. Opt. Soc. Am. 57, 835 (1967).CrossRefGoogle Scholar
  13. 13.
    M. Rohlfing, Int. J. Quantum Chem. 80, 807 (2000).CrossRefGoogle Scholar
  14. 14.
    I.D. White, R.W. Godby, M.M. Rieger, and R.J. Needs, Phys. Rev. Lett. 80, 4265 (1998).CrossRefGoogle Scholar
  15. 15.
    O. Pulci, F. Bechstedt, G. Onida, R. Del Sole, and L. Reining, Phys. Rev. B 60, 16 758 (1999).CrossRefGoogle Scholar
  16. 16.
    N.-P. Wang, M. Rohlfing, P. Krüger, and J. Pollmann Phys. Rev. B 67, 115111 (2003).CrossRefGoogle Scholar
  17. 17.
    A.A. Lucas and J.P. Vigneron, Sol. St. Comm. 49, 327 (1984).CrossRefGoogle Scholar
  18. 18.
    P. Lambin, P. Senet, A. Castieux, and L. Philippe, J. Phys. I 3, 1417 (1993).CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Michael Rohlfing
    • 1
  1. 1.School of Engineering and ScienceInternational University BremenBremenGermany

Personalised recommendations