Toward a Thermochemical Model of the Evolution of the Earth’s Mantle

  • Uwe Walzer
  • Roland Hendel
  • John Baumgardner
Conference paper


This is a report on first steps for a combination of two numerical models of the evolution of the Earth’s mantle: The first one, K3, is a new 2-D convection-fractionation model that simulates the growth of continents and of the geochemically complementary depleted mantle reservoir. The second model shows the 3-D generation of oceanic lithospheric plates and subducting sheet-like downwellings in a spherical-shell mantle. Based on the abundances of the present-day geochemical reservoirs of Hofmann (1988) we developed a numerical dynamical model of convection and of chemical differentiation in the Earth’s mantle. It is shown that a growing and additionally laterally moving continent and a growing depleted mantle evolved from an initially homogeneous primordial mantle. The internal heat production density of the evolving mantle depends on the redistribution of the radioactive elements by fractionation and convection. The fractionation generates separate geochemical reservoirs. However, the convection blurs the reservoirs by mixing. Although we take into account also the effects of the two phase transitions in 410 and 660 km depth, it is essentially the dependence of the viscosity on radius which guarantees the conservation of the major geochemical reservoirs. This model has no internal compulsory conditions. The principal idea of this first model is to compute the relative viscosity variations as a function of depth from observable quantities. We develop a self-consistent theory using the Helmholtz free energy, the Ullmann-Pan’kov equation of state, the free volume Grüneisen parameter and Gilvarry’s formulation of Lindemann’s law. In order to receive the relative variations of the radial factor of the viscosity, we insert the pressure, P, the bulk modulus, K, and ∂K/∂P from PREM. For mantle layers deeper than 771 km we used the perovskite melting curve by Zerr and Boehler (1993, 1994) in order to estimate the relative viscosity. For the calibration of the viscosity we have chosen the standard postglacial-uplift viscosity beneath the continental lithosphere. Furthermore, we took into account the dependence of the viscosity on temperature and on the degree of depletion of volatiles. An essential first new result of this paper is a high-viscosity transition layer and a second low-viscosity layer below it. Although our model mantle is essentially heated from within, we assume additionally a small heat flow at the CMB. This is necessary because of the dynamo theory of the outer core. The second main result of this first model is a more distinct bipartition of the mantle in a depleted upper part and a lower part rich in incompatible elements, yet. This result is rather insensitive to variations of the Rayleigh number and of the thermal boundary condition at CMB. The different parts of this paper are closely connected by the algorithm. The continuation of the first finding leads to a 3-D, up to now purely thermal model of mantle evolution and plate generation. This second model was used to carry out a series of three-dimensional compressible spherical-shell convection calculations with another new, but related viscosity profile, called eta3, that is derived from PREM and mineral physics, only. Here, the Birch-Murnaghan equation was used to derive the Grüneisen parameter as a function of depth. Adding the pressure dependence of the thermal expansion coefficient of mantle minerals, we derived the specific heats, c p and c v, too. Using the Gilvarry formulation, we found a new melting temperature of the mantle and the new viscosity profile, eta3. The features of eta3 are a high-viscosity transition layer, a second low-viscosity layer beginning under the 660-km discontinuity, and a strong viscosity maximum in the central parts of the lower mantle. The rheology is Newtonian but it is supplemented by a viscoplastic yield stress, y. A viscosity-level parameter, r n, and y have been varied. For a medium-sized Rayleigh-number-yield-stress area, eta3 generates a stable, plate-tectonic behavior near the surface and simultaneously thin sheet-like downwellings in the depth. Outside this area three other types of solution were found. The presence of two internal low-viscosity layers and of ∂y is obviously conducive for plateness and thin sheet-like downwellings. The distribution of the downwellings is more Earth-like if the yield stress is added. The outlines of a combination of the two models have been discussed.


Rayleigh Number Transition Layer Incompatible Element Lower Mantle Mantle Convection 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Abbott, D.A., Drury, R., Mooney, W.D., 1997. Continents as lithological icebergs: the importance of buoyant lithospheric roots. Earth Planet. Sci. Lett., 149, 15–27.CrossRefGoogle Scholar
  2. 2.
    Anderson, O.L., 1995. Equations of State of Solids for Geophysics and Ceramic Science. Oxford University Press, New York, Oxford.Google Scholar
  3. 3.
    Armstrong, R.L., 1968. A model for the evolution of strontium and lead isotopes in a dynamic Earth. Rev. Geophys., 6, 175–199.Google Scholar
  4. 4.
    Armstrong, R.L., 1991. The persistent myth of crustal growth. Australian J. Earth Sci., 38, 613–640.Google Scholar
  5. 5.
    Baumgardner, J.R., 1983. A three-dimensional finite element model for mantle convection. Thesis, Univ. of California, Los Angeles.Google Scholar
  6. 6.
    Baumgardner, J.R., 1985. Three-dimensional treatment of convective flow in the Earth’s mantle. J. Stat. Phys. 39(5–6), 501–511.CrossRefGoogle Scholar
  7. 7.
    Bercovici, D., Karato, S.-L, 2003. Whole-mantle convection and the transition-zone water filter. Nature 425, 39–44.CrossRefGoogle Scholar
  8. 8.
    Boehler, R., 1997. The temperature in the Earth’s core. In: Crossley, D.J. (Ed.), Earth’s Deep Interior. Gordon Breach Sci. Publ., Amsterdam. pp. 51–63.Google Scholar
  9. 9.
    Bunge, H.-P., Richards, M.A., Baumgardner, J.R., 1997. A sensitivity study of three-dimensional spherical mantle convection at 108 Rayleigh number: effects of depth-dependent viscosity, heating mode, and an endothermic phase change. J. Geophys. Res., 102, 11991–12007.CrossRefGoogle Scholar
  10. 10.
    Čadek, O., van den Berg, A.P., 1998. Radial profiles of temperature and viscosity in the Earth’s mantle inferred from the geoid and lateral seismic structures. Earth Planet. Sci. Lett., 164, 607–615.CrossRefGoogle Scholar
  11. 11.
    Christensen, U.R., Yuen, D.A., 1985. Layered convection induced by phase transitions. J. Geophys. Res., 90, 10291–10300.Google Scholar
  12. 12.
    Clayton, R.N., Mayeda, T.K., 1996. Oxygen isotope composition of achondrites. Geochem. Cosmochem. Acta, 60, 1999–2017.CrossRefGoogle Scholar
  13. 13.
    Condie, K.C., 1998. Episodic continental growth and supercontinents: a mantle avalanche connection?. Earth Planet. Sci. Lett., 163, 97–108.CrossRefGoogle Scholar
  14. 14.
    Cserepes, L., Yuen, D.A., 1997. Dynamical consequences of mid-mantle viscosity stratification on mantle flows with an endothermic phase transition. Geophys. Res. Lett., 24, 181–184.CrossRefGoogle Scholar
  15. 15.
    Dalrymple, G.B., 1991. The Age of the Earth. Stanford University Press, Stanford.Google Scholar
  16. 16.
    Doin, M.-P., Fleitout, L., Christensen, U., 1997. Mantle convection and stability of depleted and undepleted continental lithosphere. J. Geophys. Res., 102, No. B2, 2771–2787.CrossRefGoogle Scholar
  17. 17.
    Drury, M.R., Fitz Gerald, J.D., 1998. Mantle rheology: insights from laboratory studies of deformation and phase transition. In: Jackson, I. (Ed.), The Earth’s Mantle. Cambridge Univ. Press, Cambridge. pp. 503–559.Google Scholar
  18. 18.
    Dziewonski, A.M., Anderson, D.L., 1981. Preliminary reference Earth model. Phys. Earth Planet. Int., 25, 297–356.CrossRefGoogle Scholar
  19. 19.
    Frost, H.J., Ashby, M.F., 1982. Deformation Mechanism Maps: The Plasticity and Creep of Metals and Ceramics. Pergamon Press, Oxford.Google Scholar
  20. 20.
    Gilvarry, J.J., 1956. The Lindemann and Grüneisen Laws. Phys. Rev. 102, 307–317.Google Scholar
  21. 21.
    Glatzmaier, G.A., 1988. Numerical simulations of mantle convection: time-dependent, three-dimensional, compressible, spherical shell. Geophys. Astro-phys. Fluid Dyn. 43, 223–264.MATHGoogle Scholar
  22. 22.
    Gurnis, M., 1988. Large-scale mantle convection and the aggregation and dispersal of supercontinents. Nature, 332, 695–699.CrossRefGoogle Scholar
  23. 23.
    Hayashi, C., Nakazawa, K., Nakagawa, Y., 1985. Formation of the solar system. In: Black, D.C., Matthews, M.S. (Eds.), Protostars and Planets II. University of Arizona Press, Tucson.Google Scholar
  24. 24.
    Hofmann, A.W., 1988. Chemical differentiation of the Earth: the relationship between mantle, continental crust, and oceanic crust. Earth Planet. Sci. Lett., 90, 297–314.CrossRefGoogle Scholar
  25. 25.
    Hofmann, A.W., 1997. Mantle chemistry: the message from oceanic volcanism. Nature, 385, 219–229.CrossRefGoogle Scholar
  26. Honda, S., Iwase, Y., 1996. Comparison of the dynamic and parameterized models of mantle convection including core cooling. Earth Planet. Sci. Lett. 139, 133–145.CrossRefGoogle Scholar
  27. 27.
    Irvine, R.D., Stacey, F.D., 1975. Pressure dependence of the thermal Grüneisen parameter, with application to the Earth’s lower mantle and outer core. Phys. Earth Planet. Int., 11, 157–165.CrossRefGoogle Scholar
  28. 28.
    Ito, E., Matsui, Y., 1978. Synthesis and crystal-chemical characterization of MgSiO3 perovskite. Earth Planet. Sci. Lett., 38, 443–450.CrossRefGoogle Scholar
  29. 29.
    Karato, S., 1989. Defects and plastic deformation of olivine. In: Karato, S., Toriumi, M. (Eds.), Rheology of Solids and of the Earth. Oxford Univ. Press, Oxford. pp. 176–208.Google Scholar
  30. 30.
    Karato, S., 1997. Phase transformations and rheological properties of mantle minerals. In: Crossley, D.J. (Ed.), Earth’s Deep Interior. Gordon Breach Sci. Publ., Amsterdam. pp. 223–272.Google Scholar
  31. 31.
    Karato, S., Li, P., 1992. Diffusion creep in perovskite: implications for the rheology of the lower mantle. Science, 255, 1238–1240.CrossRefGoogle Scholar
  32. 32.
    Karato, S., Wu, P., 1993. Rheology of the upper mantle: a synthesis. Science, 260, 771–778.CrossRefGoogle Scholar
  33. 33.
    Karato, S., Wang, Z., Liu, B., Fujino, K., 1995. Plastic deformation of garnets: systematics and implications for the rheology of the mantle transition zone. Earth Planet. Sci. Lett., 130, 13–30.CrossRefGoogle Scholar
  34. 34.
    Kaufmann, G., Lambeck, K., 2002. Glacial isostatic adjustment and the radial viscosity profile from inverse modeling. J. Geophys. Res. 107(B11), 2280 (doi: 10.1029/2001JB000941).CrossRefGoogle Scholar
  35. 35.
    Kellogg, L.H., Hager, B.H., van der Hilst, R.D., 1999. Compositional stratification in the deep mantle. Science, 283, 1881–1884.CrossRefGoogle Scholar
  36. Kido, M., Čadek, O., 1997. Inferences of viscosity from the oceanic geoid: indication of a low viscosity zone below the 660-km discontinuity. Earth Planet. Sci. Lett., 151, 125–137.CrossRefGoogle Scholar
  37. 37.
    Kido, M., Yuen, D.A., Čadek, O., Nakakuki, T., 1998. Mantle viscosity derived by genetic algorithms using oceanic geoid and seismic tomography for whole-mantle versus blocked-flow situations. Phys. Earth Planet. Int., 107, 307–326.CrossRefGoogle Scholar
  38. 38.
    King, S.D., Masters, G., 1992. An inversion for radial viscosity structure using seismic tomography. Geophys. Res. Lett., 19, 1551–1554.Google Scholar
  39. 39.
    Leibfried, G., Ludwig, W., 1961. Theory of anharmonic effects in crystals. Solid State Phys., 12, 275–444.MathSciNetGoogle Scholar
  40. 40.
    Li, P., Karato, S., Wang, Z., 1996. High-temperature creep in fine-grained poly-crystalline CaTiO3, an analogue material of (Mg,Fe)SiO3 perovskite. Phys. Earth Planet. Int., 95, 19–36.CrossRefGoogle Scholar
  41. 41.
    Lister, J.R.. Buffett, B.A., 1995. The strength and efficiency of thermal and compositional convection in the geodynamo. Phys. Earth Planet. Int., 91, 17–30.CrossRefGoogle Scholar
  42. 42.
    Lithgow-Bertelloni, C., Richards, M.A., 1998. The dynamics of Cenozoic and Mesozoic plate motions. Rev. Geophysics 36, 27–78.CrossRefGoogle Scholar
  43. 43.
    Marquart, G., Schmeling, H., Braun, A., 1999. Small-scale instabilities below the cooling oceanic lithosphere. Geophys. J. Int., 138, 655–666.CrossRefGoogle Scholar
  44. 44.
    McCulloch, M.T., Bennett, V.C., 1994. Progressive growth of the Earth’s continental crust and depleted mantle geochemical constraints. Geochim. Cos-mochim. Acta, 58, 4717–4738.CrossRefGoogle Scholar
  45. 45.
    McCulloch, M.T., Bennett, V.C., 1998. Early differentiation of the Earth: an isotopic perspective. In: Jackson, I. (Ed.), The Earth’s Mantle. Cambridge Univ. Press, Cambridge. pp. 127–158.Google Scholar
  46. 46.
    Nellis, W.J., 2000. Metallization of fluid hydrogen at 140Gpa (1.4Mbar): implications for Jupiter. Planetary and Space Science, 48, 671–677.CrossRefGoogle Scholar
  47. 47.
    Norton, I.O., 2000. Global hot spot reference frames and plate motion. In: Richards, M.A., Gordon, R.G., van der Hilst, R.D., (Eds.), The History and Dynamics of Global Plate Motions. AGU, Washington, DC, pp. 339–357.Google Scholar
  48. 48.
    Nutman, A.P., McGregor, V.R., Friend, C.R.L., Bennett, V.C., Kinny, P.D., 1996. The Itsaq gneiss complex of southern West Greenland; the world’s most extensive record of early crustal evolution (3900–3600 Ma). Precambrian Research, 78, 1–39.CrossRefGoogle Scholar
  49. 49.
    O’Neill, H.S.C., Palme, H., 1998. Composition of the silicate Earth: implications for accretion and core formation. In: Jackson, I. (Ed.), The Earth’s Mantle. Cambridge Univ. Press, Cambridge. pp. 3–126.Google Scholar
  50. 50.
    Ohtani, E., 1983. Melting temperature distribution and fractionation in the mantle. Phys. Earth Planet. Int., 33, 12–25.CrossRefGoogle Scholar
  51. 51.
    Pari, G., Peltier, W.R., 1998. Global surface heat flux anomalies from seismic tomography-based models of mantle flow: implications for mantle convection. J. Geophys. Res., 103, 23743–23780.CrossRefGoogle Scholar
  52. 52.
    Poirier, J.P., 1988. Lindemann law and the melting temperature of perovskites. Phys. Rev. Lett., 54, 364–369.Google Scholar
  53. 53.
    Poirier, J.P., 1991. Introduction to the Physics of the Earth’s Interior. Cambridge University Press, Cambridge etc.Google Scholar
  54. 54.
    Pollack, H.N., Hurter, S.J., Johnson, J.R., 1993. Heat flow from the Earth’s interior: analysis of the global data set. Rev. Geophys., 31, 267–280.CrossRefGoogle Scholar
  55. 55.
    Ranalli, G., 1998. Inferences on mantle rheology from creep laws. GeoResearch Forum, 3–4, 323–340.Google Scholar
  56. 56.
    Richter, F.M., 1973. Finite amplitude convection through a phase boundary. Geophys. J. R. Astron. Soc., 35, 265–276.Google Scholar
  57. 57.
    Ringwood, A.E., 1990. Slab-mantle interactions: petrogenesis of intraplate magmas and structure of the upper mantle. Chem. Geol., 82, 187–207.CrossRefGoogle Scholar
  58. 58.
    Ringwood, A.E., 1991. Phase transformations and their bearing on the constitution and dynamics of the mantle. Geochim. Cosmochim. Acta, 55, 2083–2110.CrossRefGoogle Scholar
  59. 59.
    Rudnick, R., 1995. Making continental crust. Nature, 378, 571–577.CrossRefGoogle Scholar
  60. 60.
    Ryshik, I.M., Gradstein, I.S., 1957. Summen-, Produkt-und Integraltafeln. Deutscher Verlag der Wissenschaften, Berlin.MATHGoogle Scholar
  61. 61.
    Schmeling, H., Monz, R., Rubie, D.C., 1999. The influence of olivine metastability on the dynamics of subduction. Earth Planet. Sci. Lett., 165, 55–66.CrossRefGoogle Scholar
  62. 62.
    Schubert, G., Turcotte, D.L., Olson, P., 2001. Mantle Convection in the Earth and Planets. Cambridge Univ. Press, Cambridge, etc., 940 pp.Google Scholar
  63. 63.
    Sleep, N.H., 1990. Hot spots and mantle plumes: some phenomenology. J. Geophys. Res., 95, 6715–6736.CrossRefGoogle Scholar
  64. 64.
    Stacey, F.D., 1992. Physics of the Earth. p. 459, Brookfield Press, Brisbane.Google Scholar
  65. 65.
    Stacey, F.D., Irvine, R.D., 1977a. Theory of melting: thermodynamic basis of Lindemann’s law. Austral. J. Phys., 30, 631–640.Google Scholar
  66. 66.
    Stacey, F.D., Irvine, R.D., 1977b. A simple dislocation theory of melting. Austral. J. Phys., 30, 641–646.Google Scholar
  67. 67.
    Steinbach, V., Yuen, D.A., 1992. The effects of multiple phase transitions on Venusian mantle convection. Geophys. Res. Lett., 19, 2243–2246.Google Scholar
  68. 68.
    Steinbach, V., Yuen, D.A., 1994. Effects of depth-dependent properties on the thermal anomalies produced in flush instabilities from phase transitions. Phys. Earth Planet. Inter. 86, 165–183.CrossRefGoogle Scholar
  69. 69.
    Steinbach, V., Yuen, D.A., Zhao, W.L., 1993. Instabilities from phase transitions and the timescales of mantle thermal evolution. Geophys. Res. Lett. 20, 1119–1122.Google Scholar
  70. 70.
    Stevenson, D.J., Spohn, T., Schubert, G., 1983. Magnetism and thermal evolution of the terrestrial planets. Icarus 54, 466–489.CrossRefGoogle Scholar
  71. 71.
    Stixrude, L., 1997. Structure and sharpness of phase transitions and mantle discontinuities. J. Geophys. Res., 102, 14835–14852.CrossRefGoogle Scholar
  72. 72.
    Tackley, P.J., 2002. Strong heterogeneity caused by deep mantle layering. Geochem. Geophys. Geosyst., 3(4), 10.1029/2001 GC000167.Google Scholar
  73. 73.
    Taylor, S.R., McLennan, S.M., 1985. The Continental Crust: Its Composition and Evolution. Blackwell, Oxford.Google Scholar
  74. 74.
    Taylor, R.S., McLennan, S.M., 1995. The geochemical evolution of the continental crust. Rev. Geophys., 33, 241–265.CrossRefGoogle Scholar
  75. 75.
    Thomsen, L., 1970. On the fourth-order anharmonic equation of state of solids. J. Phys. Chem. Solids, 31, 2003–2016CrossRefGoogle Scholar
  76. 76.
    Ullmann, W., Pankov, V.L., 1976. A new structure of the equation of the state and its application in high-pressure physics and geophysics. Veröff. Zentralinst. Physik der Erde, 41, 1–201.Google Scholar
  77. 77.
    Van den Berg, A.P., Yuen, D.A., 1998. Modelling planetary dynamics by using the temperature at the core-mantle boundary as a control variable: effects of rheological layering on mantle heat transport. Phys. Earth Planet. Int., 108, 219–234.CrossRefGoogle Scholar
  78. 78.
    Van Keken, P.E., Yuen, D.A., 1995. Dynamical influences of high viscosity in the lower mantle induced by the steep melting curve of perovskite: effects of curvature and time dependence. J. Geophys. Res., 100, No. B8, 15233–15248.CrossRefGoogle Scholar
  79. 79.
    Van Keken, P.E., Ballentine, C.J., 1999. Dynamical models of mantle volatile evolution and the role of phase transitions and temperature-dependent rheology. J. Geophys. Res., 104, 7137–7151CrossRefGoogle Scholar
  80. 80.
    Vashchenko, V.Y., Zubarev, V.N., 1963. Concerning the Grüneisen constant. Soviet Phys.-Solid State (Engl. translation), 5, 653–655.Google Scholar
  81. 81.
    Walzer, U., Hendel, R., 1997a. Time-dependent thermal convection, mantle differentiation and continental-crust growth. Geophys. J. Int., 130, 303–325.CrossRefGoogle Scholar
  82. 82.
    Walzer, U. and Hendel, R., 1997b. Tectonic episodicity and convective feed-back mechanisms. Phys. Earth Planet. Interiors, 100, 167–188.CrossRefGoogle Scholar
  83. 83.
    Walzer, U. and Hendel, R., 1999. A new convection-fractionation model for the evolution of the principal geochemical reservoirs of the Earth’s mantle. Phys. Earth Planet. Interiors, 112, 211–256.CrossRefGoogle Scholar
  84. 84.
    Walzer, U., Hendel, R., Baumgardner, J., 2003a. Variation of non-dimensional numbers and a thermal evolution model of the Earth’s mantle. In: Krause, E., Jäger, W.(Eds.), High Performance Computing in Science and Engineering’ 02. Springer-Verlag, Berlin Heidelberg New York. pp. 89–103. ISBN 3-540-43860-2.Google Scholar
  85. 85.
    Walzer, U., Hendel, R., Baumgardner, J., 2003b. Viscosity stratification and a 3-D compressible spherical shell model of mantle evolution. In: Krause, E., Jäger, W., Resch, M., (Eds.), High Performance Computing in Science and Engineering’ 03. Springer-Verlag, Berlin Heidelberg New York. pp. 27–67. ISBN 3-540-40850-9.Google Scholar
  86. 86.
    Walzer, U., Hendel, R., Baumgardner, J., 2003c. Generation of plate-tectonic behavior and a new viscosity profile of the Earth’s mantle. In: Wolf, D., Münster, G., Kremer, M. (Eds.), NIC Symposium 2004. NIC Series 20, pp. 419–428. ISBN 3-00-012372-5.Google Scholar
  87. 87.
    Walzer, U., Hendel, R., Baumgardner, J., 2004. The effects of a variation of the radial viscosity profile on mantle evolution. Tectonophysics, 36 pp., accepted for publication.Google Scholar
  88. 88.
    Walzer, U., Ullmann, W., Pankov, V.L., 1979. Comparison of some equation-of-state theories by using experimental high-compression data. Phys. Earth Planet. Interiors, 18, 1–12.CrossRefGoogle Scholar
  89. 89.
    Weidner, D.J., 1986. Mantle models based on measured physical properties of minerals. In: Saxena, S.K. (Ed.), Chemistry and Physics of Terrestrial Planets. Springer, Berlin. pp. 251–274.Google Scholar
  90. 90.
    Weidner, D.J., Chen, J., Xu, Y., Wu, Y., Vaughan, M.T., Li, L., 2001. Subduction zone rheology. Phys. Earth. Planet. Int. 127, 67–81.CrossRefGoogle Scholar
  91. 91.
    Wetherill, G.W., 1986. Accumulation of the terrestrial planets and implications concerning lunar origin. In: Hartmann, W.K., Philips, R.J., Taylor, G.J. (Eds.), Origin of the Moon. Lunar and Planetary Institute, Houston. pp. 519–550.Google Scholar
  92. 92.
    Woodhead, J.D., McCulloch, M.T., 1989. Ancient seafloor signals in the Pitcairn Island lavas and evidence for large amplitude, small length scale mantle heterogenities. Earth Planet. Sci. Lett., 94, 257–273CrossRefGoogle Scholar
  93. 93.
    Xie, S., Tackley, P.J., 2003. Evolution of helium and argon isotopes in a convecting mantle. Phys. Earth Planet. Int., submitted.Google Scholar
  94. 94.
    Yale, L.B., Carpenter, S.J., 1998. Large igneous provinces and giant dike swarms: proxies for supercontinent cyclicity and mantle convection. Earth Planet. Sci. Lett., 163, 109–122.CrossRefGoogle Scholar
  95. 95.
    Yang, W.-S., 1997. Variable viscosity thermal convection at infinite Prandtl number in a thick spherical shell. Thesis, Univ. of Illinois, Urbana-Champaign.Google Scholar
  96. 96.
    Yuen, D.A., Cserepes, L., Schroeder, B.A., 1998. Mesoscale structure in the transition zone: dynamical consequences of boundary layer activities. Earth Planets Space, 50, 1035–1045.Google Scholar
  97. 97.
    Zerr, A., Boehler, R., 1993. Melting of (Mg,Fe)SiO3-perovskite to 625 kilobars: indication of a high melting temperature in the lower mantle. Science, 262, 553–555.CrossRefGoogle Scholar
  98. 98.
    Zerr, A., Boehler, R., 1994. Constraints on the melting temperature of the lower mantle from high-pressure experiments on MgO and magnesiowüstite. Nature, 371, 506–508.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Uwe Walzer
    • 1
  • Roland Hendel
    • 1
  • John Baumgardner
    • 2
  1. 1.Institut für GeowissenschaftenFriedrich-Schiller-UniversitätJenaGermany
  2. 2.Los Alamos National Laboratory, MS B216 T-3Los AlamosUSA

Personalised recommendations