Glycine at the Water / Pyrite Interface Under Extreme Pressure / Temperature Conditions

  • C. Boehme
  • E. Schreiner
  • D. Marx
Conference paper


We present ab initio molecular dynamics (MD) simulations of the simplest amino acid, glycine, at the water / pyrite interface under extreme pressure / temperature conditions. These simulations are aimed to contribute to the discussion of the “iron-sulfur world” (ISW) scenario, an intriguing proposal in the controversial field of “Origin of Life” research. The simulations show that glycine easily desorbs from a water / pyrite interface through hydrogen-bond assistance. The retention time is only of the order of a picosecond and the surface bonding is best understood as a relatively weak electrostatic interaction. However, we have found indications of glycine activation due to the interaction with the surface, and thus for a possible reaction with a suitable anchor molecule.


Electron Localization Function Extreme Pressure Pyrite Surface Simple Amino Acid Free Electron Pair 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Miller, S. L. Science 1953, 117, 528–592.CrossRefGoogle Scholar
  2. 2.
    Fry, I. The Emergence of Life on Earth; Rutgers University Press: 2000.Google Scholar
  3. 3.
    Wächtershäuser, G. Prog. Biophys. molec. Biol. 1992, 58, 85–201.CrossRefGoogle Scholar
  4. 4.
    Huber, C.; Wächtershäuser, G. Science 1998, 281, 670–672.CrossRefGoogle Scholar
  5. 5.
    Car, R.; Parrinello, M. Phys. Rev. Lett. 1985, 55, 2471–2474.CrossRefGoogle Scholar
  6. 6.
    Marx, D.; Hutter, J. Ab initio molecular dynamics: Theory and Implementation. In Modern Methods and Algorithms of Quantum Chemistry, Vol. 1; Grotendorst, J., Ed.; John von Neumann Institute for Computing: Jülich, 2000 Scholar
  7. 7.
    Boehme, C.; Marx, D. J. Am. Chem. Soc. 2003, 125, 13362–13363.CrossRefGoogle Scholar
  8. 8.
    Hutter, J.; Alavi, A.; Deutsch, T.; Bernasconi, M.; Goedecker, S.; Marx, D.; Tuckerman, M.; Parrinello, M. “CPMD”, MPI für Festkörperforschung and IBM Zurich Research Laboratory, 1990–2001.Google Scholar
  9. 9.
    Perdew, J. P.; Burke, K.; Ernzerhof, M. Phys. Rev. Lett. 1996, 77, 3865–3868.CrossRefGoogle Scholar
  10. 10.
    Perdew, J. P.; Burke, K.; Ernzerhof, M. Phys. Rev. Lett. 1997, 78, 1396.CrossRefGoogle Scholar
  11. 11.
    Vanderbilt, D. Phys. Rev. B 1990, 41, 7892.CrossRefGoogle Scholar
  12. 12.
    Troullier, N.; Martins, J. L. Phys. Rev. B 1991, 43, 1993.CrossRefGoogle Scholar
  13. 13.
    Hartwigsen, C.; Goedecker, S.; Hutter, J. Phys. Rev. B 1998, 58, 3641–3662.CrossRefGoogle Scholar
  14. 14.
    Opahle, I.; Koepernik, K.; Eschrig, H. Phys. Rev. B 1999, 60, 14035–14041.CrossRefGoogle Scholar
  15. 15.
    Raybaud, P.; Kresse, G.; Hafner, J.; Toulhoat, H. J. Phys.-Condes. Matter 1997, 9, 11085–11106.CrossRefGoogle Scholar
  16. 16.
    Muscat, J.; Hung, A.; Russo, S.; Yarovsky, I. Phys. Rev. B 2002, 65, art. no.-054107.Google Scholar
  17. 17.
    Stevens, E. D.; DeLucia, M. L.; Coppens, P. Inorg. Chem. 1980, 19, 813.CrossRefGoogle Scholar
  18. 18.
    Will, G.; Lauterjung, J.; Schmitz, H.; Hinze, E.. In High Pressure in Science and Technology; Homan, C.; MacCrone, R. K.; Whalley, E., Eds.; Materials Reserach Society Symposia Proceedings 22; Elsevier, New York: 1984.Google Scholar
  19. 19.
    Schwegler, E.; Galli, G.; Gygi, F.; Hood, R. Q. Phys. Rev. Lett. 2001, 87, art. no. 265501.Google Scholar
  20. 20.
    Hamann, D. R. Phys. Rev. B 1997, 55, R10157.CrossRefGoogle Scholar
  21. 21.
    Kurth, S.; Perdew, J.; Blaha, P. Int. J. Quantum Chem. 1999, 75, 889–909.CrossRefGoogle Scholar
  22. 22.
    Pulkkinen, S.; Noguera, M.; Rodriguez-Santiago, L.; Sodupe, M.; Bertran, J. Chem.-Eur. J. 2000, 6, 4393–4399.CrossRefGoogle Scholar
  23. 23.
    Savin, A.; Nesper, R.; Wengert, S.; Fassler, T. F. Angew. Chem.-Int. Edit. Engl. 1997, 36, 1809–1832.Google Scholar
  24. 24.
    Keller, M.; Blochl, E.; Wächtershäuser, G.; Stetter, K. O. Nature 1994, 368, 836–838.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • C. Boehme
    • 1
  • E. Schreiner
    • 1
  • D. Marx
    • 1
  1. 1.Lehrstuhl für Theoretische ChemieRuhr-Universität BochumBochum

Personalised recommendations