Potential Energy Surfaces of Unusual Double Proton Transfer Reactions

  • Guntram Rauhut
  • Stefan Schweiger
Conference paper


Quantum chemical calculations at the MP2/[aug]-cc-pVDZ level were used to generate a two-dimensional potential energy surface for an unusual double proton transfer reaction in which the region around the transition state is characterized by a plateau of almost constant energy. A cut of the first electronically excited singlet state potential energy surface along the ground-state reaction path was computed using time-dependent density functional theory. In addition, solvent effects which lead to significant changes of the surface were studied using a self-consistent reaction field approach.


Potential Energy Surface Solvent Effect Proton Transfer Reaction Minimum Energy Path Stepwise Mechanism 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    E.F. Caldin and V. Gold, Proton Transfer Reactions, volume 1, (Chapman and Hall, London, 1975).Google Scholar
  2. 2.
    J. Bertran, A. Oliva, L. Rodriguez-Santiago, and M. Sodupe, J. Am. Chem. Soc. 120, 8159 (1998).CrossRefGoogle Scholar
  3. 3.
    L. Meschede and H.-H. Limbach, J. Phys. Chem. 95, 10267 (1991).CrossRefGoogle Scholar
  4. 4.
    J.L.G. de Paz, J. Elguero, C. Foces-Foces, A.L. Llamas-Saiz, F. Aguilar-Parilla, O. Klein, and H.H. Limbach, J. Chem,. Soc., Perkin Trans. 2101 (1997).Google Scholar
  5. 5.
    C. Alhambra, F.J. Luque, F. Gago, and M. Orozco, J. Phys. Chem. B 101, 10075 (1997).CrossRefGoogle Scholar
  6. 6.
    T. Loerting and K.R. Liedl, J. Am. Chem. Soc. 120, 12595 (1998).CrossRefGoogle Scholar
  7. 7.
    J. Florian, V. Hrouda, and P. Hobza, J. Am. Chem. Soc. 116, 1457 (1994).CrossRefGoogle Scholar
  8. 8.
    G. Rauhut, Phys. Chem. Chem. Phys. 5, 791 (2003).CrossRefGoogle Scholar
  9. 9.
    S. Schweiger and G. Rauhut, J. Phys. Chem. A 107, 9668 (2003).CrossRefGoogle Scholar
  10. 10.
    S. Schweiger, B. Hartke, and G. Rauhut, Phys. Chem. Chem. Phys. 6, 3341 (2004).CrossRefGoogle Scholar
  11. 11.
    C. Møller and M. S. Plesset, Phys. Rev. 46, 618 (1934).CrossRefGoogle Scholar
  12. 12.
    T.H. Dunning, J. Chem. Phys. 90, 1007 (1989).CrossRefGoogle Scholar
  13. 13.
    M. W. Schmidt, K. K. Baldridge, J. A. Boatz, S. T. Elbert, M. S. Gordon, J. H. Jensen, S. Koseki, N. Matsunaga, K. A. Nguyen, S. J. Su, T. L. Windus, M. Dupuis, and J. A. Montgomery, J. Corn-put. Chem. 14, 1347 (1993).Google Scholar
  14. 14.
    A. Klamt and G. Schüürman, J. Chem. Soc., Perkin Trans. 2799 (1993).Google Scholar
  15. 15.
    A. D. Becke, J. Chem. Phys. 98, 5648 (1993).CrossRefGoogle Scholar
  16. 16.
    C. Lee, W. Yang, and R. G. Parr, Phys. Rev. A 38, 3098 (1988).CrossRefGoogle Scholar
  17. 17.
    S. Kristyan and P. Pulay, Chem. Phys. Lett. 229, 175 (1994).CrossRefGoogle Scholar
  18. 18.
    W. Koch and M.C. Holthausen, A Chemist’s Guide to Density Functional Theory, (Wiley-VCH, Weinheim, 1999).Google Scholar
  19. 19.
    W.H. Miller, N.C. Handy, and J.E. Adams, J. Chem. Phys. 72, 99 (1980).CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Guntram Rauhut
    • 1
  • Stefan Schweiger
    • 1
  1. 1.Institut für Theoretische ChemieUniversität StuttgartStuttgart

Personalised recommendations