Thermal Quark Anti-quark Free Energies, Energies and Screening in Hot SU(3) Gauge Theory

  • O. Kaczmarek
  • F. Karsch
  • P. Petreczky
  • F. Zantow
Conference paper


Lattice Monte-Carlo simulations of quantum chromodyanmics (QCD) have shown that strongly interacting matter undergoes a phase transition at some temperature T c [1]. Above the transition temperatures T c hadrons (the experimentally observed strongly interacting particles) cease to exist and a new state of matter, the so-called quark-gluon plasma (QGP) was predicted to exist [1]. One of the most prominent features of QGP is the screening of static chromoelectric fields. At large distances (i.e. distances much larger than the inverse temperature) the screening is exponential and can be parametrized by a temperature dependent chromoelectric screening mass. Chromoelectric screening masses have been extensively studied by us in the last few years [2, 3] in the framework of our project (Nr. 11725). More recently chromoelectric screening has been studied in terms of the free energy of static quark anti-quark pair [4,5,6,7]. Moreover we developed a technique to separate energy and entropy contributions to the free energy [8, 9].


Free Energy Gauge Theory Wilson Line Polyakov Loop Entropy Contribution 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    M. Le Bellac, Thermal Field Theory (Cambridge University Press 1996)Google Scholar
  2. 2.
    A. Cucchieri, F. Karsch and P. Petreczky, Phys. Lett. B 497 (2001) 80.CrossRefGoogle Scholar
  3. 3.
    A. Cucchieri, F. Karsch and P. Petreczky, Phys. Rev. D 64 (2001) 036001.CrossRefGoogle Scholar
  4. 4.
    P. Petreczky et al, Nucl. Phys. A698 (2002) 400Google Scholar
  5. 5.
    O. Kaczmarek, F. Karsch, P. Petreczky, F. Zantow, Phys. Lett. B543 (2002) 41Google Scholar
  6. 6.
    Proceedings of Workshop on Strong and Electroweak Matter (SEWM 2002), Heidelberg, Germany, 2–5 Oct 2002, hep-lat/0301015Google Scholar
  7. 7.
    O. Kaczmarek et al, contributed to 21st International Symposium on Lattice Field Theory (LATTICE 2003), Tsukuba, Ibaraki, Japan, 15–19 Jul 2003, hep-lat/0309121Google Scholar
  8. 8.
    F. Karsch, Talk given at Quark Matter 2004, Oakland, 11–17 Jan 2004, hep-lat/0403016Google Scholar
  9. 9.
    F. Zantow, PhD Thesis, University of Bielefeld, 2004Google Scholar
  10. 10.
    T. Matsui and H. Satz, Phys. Lett. B178 (1986) 416Google Scholar
  11. 11.
    O. Kaczmarek, F. Karsch, E. Laermann and M. Luetgemeier, Phys. Rev. D62 (2000) 034021Google Scholar
  12. 12.
    O. Kaczmarek et al, Talk given at Workshop on Finite Density QCD at Nara, Nara, Japan, 10–12 Jul 2003, hep-lat/0312015Google Scholar
  13. 13.
    P. Weisz, Nucl. Phys. B212 (1983) 1; P. Weisz and R. Wohlert, Nucl. Phys. B236 (1984) 397; ibid. B247 (1984) 544CrossRefMathSciNetGoogle Scholar
  14. 14.
    B. Beinlich, F. Karsch, E. Laermann and A. Peikert, Eur. Phys. J C6 (1999) 133CrossRefGoogle Scholar
  15. 15.
    F. Karsch, E. Laermann and A. Peikert, Nucl. Phys. B605 (2001) 579CrossRefGoogle Scholar
  16. 16.
    S. Nadkarni, Phys. Rev. D33 (1986) 3738Google Scholar
  17. 17.
    L.D. McLerran and B. Svetitsky, Phys. Rev. D24 (1981) 450Google Scholar
  18. 18.
    O. Philipsen, Phys. Lett. B535 (2002) 138Google Scholar
  19. 19.
    see e.g. A. Dumitru et al., hep-th/0311223Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • O. Kaczmarek
    • 1
  • F. Karsch
    • 1
  • P. Petreczky
    • 1
    • 2
  • F. Zantow
    • 1
  1. 1.Fakultät für PhysikUniversität BielefeldBielefeldGermany
  2. 2.Physics Department Brookhaven National LaboratoryNuclear Theory GroupUpton

Personalised recommendations