The Iron(III) Catalyzed Michael Reaction — Reactivity Differences Between Several Different Acceptors

  • Silke Pelzer
  • Christoph van Wüllen
Conference paper


The iron(III) catalyzed Michael reaction works fine with simple enones, but other Michael acceptors such as acrylic acid methyl ester did not show any reactivity in the experiments done so far. Therefore we performed quantum chemical computations to assess the reactivity of various quite different Michael acceptors. Since previous studies showed that the C-C bone forming step most likely occurs at a mononuclear iron center with two dionato ligands, the barrier heights of such steps have been calculated with hybrid density functional methods. A mixed anhydride of acrylic acid and trifluoroacetic acid was identified as a very promising candidate to carry out further experiments.


Acrylic Acid Barrier Height Coordination Mode Methyl Acrylate Carbonyl Oxygen Atom 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J. Christoffers, Synlett. 6 723 (2001)CrossRefGoogle Scholar
  2. 2.
    S. Pelzer and C. van Wüllen, in: High Performance Computing in Science and Engineering’ 02, eds. E. Krause and W. Jäger, Springer 2003, pp. 241–250.Google Scholar
  3. 3.
    S. Pelzer, T. Kauf, C. van Wüllen and J. Christoffers, J. Organomet. Chem. 684, 308 (2003).Google Scholar
  4. 4.
    A.D. Becke, J. Chem. Phys. 98, 5648 (1993).CrossRefGoogle Scholar
  5. 5.
    P.J. Stephens, F.J. Devlin, C.F. Chabalowski and M.J. Frisch, J. Phys. Chem. 98, 11623 (1994).CrossRefGoogle Scholar
  6. 6.
    A. Schäfer, C. Huber and R. Ahlrichs, J. Chem. Phys. 100 5829 (1994).CrossRefGoogle Scholar
  7. 7.
    M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, V.G. Zakrzewski, J.A. Montgomery, Jr., R.E. Stratmann, J.C. Burant, S. Dapprich, J.M. Millam, A.D. Daniels, K.N. Kudin, M.C. Strain, O. Farkas, J. Tomasi, V. Barone, M. Cossi, R. Cammi, B. Mennucci, C. Pomelli, C. Adamo, S. Clifford, J. Ochterski, G.A. Petersson, P.Y. Ayala, Q. Cui, K. Morokuma, D.K. Malick, A.D. Rabuck, K. Raghavachari, J.B. Foresman, J. Cioslowski, J.V. Ortiz, B.B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. Gomperts, R.L. Martin, D.J. Fox, T. Keith, M.A. Al-Laham, C.Y. Peng, A. Nanayakkara, C. Gonzalez, M. Challacombe, P.M.W. Gill, B. Johnson, W. Chen, M.W. Wong, J.L. Andres, C. Gonzalez, M. Head-Gordon, E.S. Replogle, J.A. Pople, program Gaussian 98 (1999)Google Scholar
  8. 8.
    R.H. Hertwig and W. Koch, Chem. Phys. Lett. 268 345 (1997)CrossRefGoogle Scholar
  9. 9.
    J. Christoffers, private communication.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Silke Pelzer
    • 1
  • Christoph van Wüllen
    • 1
  1. 1.Institut für Chemie, Sekr. C3Technische Universität BerlinBerlinGermany

Personalised recommendations