Recent Improvements of the Parallel-Multiblock URANUS 3D Nonequilibrium Code

  • M. Fertig
  • F. Infed
  • F. Olawsky
  • M. Auweter-Kurtz
  • P. Adamidis
Conference paper


The 3D Parallel-Multiblock URANUS code has been extended by models for radiative exchange between the surface elements and for heat conduction within the TPS (Thermal Protection System). The coupling of the newly developed models with catalytic effects for the real TPS, predicted by a global catalysis model, and with temperature dependent emissivity leads to significant differences in surface temperature distribution. Results for the X-38 re-entry vehicle will be discussed in some detail. Large memory and computational time requirements arise in order to solve the non-equilibrium Navier-Stokes equations on 1.02 million cells coupled with the surface models.


Surface Element Radiative Exchange View Factor Recombination Coefficient Thermal Protection System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Th. Bönisch and R. Rühlc. Efficient flow simulation with structured multiblock meshes on current supercomputers. In D.R. Emerson, editor, Parallel Computing in CFD. ERCOFTAC Bulletin No. 50, 2001.Google Scholar
  2. 2.
    S.Y. Chou and D. Baganoff. Kinetic flux vector splitting for the navier stokes equations. Journal of Computational Physics, 130:217–230, 1997.MATHCrossRefGoogle Scholar
  3. 3.
    A. Daiß, H.-H. Frühauf, and E.W. Messerschmid. Modeling of catalytic reactions on silica surfaces with consideration of slip effects. Journal of Thermophysics and Heat Transfer, 11(3), jul 1997.Google Scholar
  4. 4.
    M. Fertig, A. Dohr, and H.-H. Frühauf. Transport coefficients for high tem perature nonequilibrium air flows. AIAA Journal of Thermophysics and Heat Transfer, 15(2):148–156, apr 2001.CrossRefGoogle Scholar
  5. 5.
    M. Fertig and H.-H. Frühauf. Detailed computation of the aerothermodynamic loads of the mirka capsule. In Proceedings of the Third European Symposium on Aerothermodynamics for Space Vehicles, pages 703–710, ESTEC, Noordwijk, The Netherlands, nov 1998. ESA.Google Scholar
  6. 6.
    M. Fertig, H.-H. Frühauf, and M. Auweter-Kurtz. Modelling of reactive pro cesses at sic surfaces in rarefied nonequilibrium airflows. AIAA-Paper 2002-3102, 8th AIAA Joint Thermophysics and Heat Transfer Conference, St. Louis, Missouri, USA, 2002.Google Scholar
  7. 7.
    H.-H. Frühauf, M. Fertig, F. Infed, S. Kanne, F. Olawsky, M. Resch, and Th. Bönisch. TP C3: Numerische Wiedereintritts-Aerothermodynamik, pages 355–389. SFB 259, Stuttgart, Germany, 2001. (in German).Google Scholar
  8. 8.
    H.-H. Frühauf, M. Fertig, F. Olawsky, and T. Bönisch. Upwind relaxation algorithm for reentry nonequilibrium flows. In High Performance Computing in Science and Engineering 99, pages 365–378. Springer, 2000.Google Scholar
  9. 9.
    F. Infed and M. Auweter-Kurtz. Simulation of hypersonic flows in thermo chemical nonequilibrium around re-entry vehicle x-38 with the uranus code. 3rd International Symposium Atmospheric Reentry Vehicles and Systems, Arcachon, France, mar 2003.Google Scholar
  10. 10.
    F. Infed, F. Olawsky, and M. Auweter-Kurtz. Stationary coupling of 3d hypersonic nonequilibrium flows and tps structure with uranus. Journal of Spacecrafts and Rockets, 2004. in press.Google Scholar
  11. 11.
    S. Jonas. Implizites Godunov-Typ-Verfahren zur voll gekoppelten Berechnung reibungsfreier Hyperschallströmungen im thermo-chemischen Nichtgleichgewicht. PhD thesis, Institut für Raumfahrtsysteme, Universität Stuttgart, Germany, 1993.Google Scholar
  12. 12.
    S. Kanne, O. Knab, H.-H. Frühauf, and E.W. Messerschmid. The influence of rotational excitation on vibration-chemistry-vibration-coupling. AIAA-Paper 96-1802, 1996.Google Scholar
  13. 13.
    F. Olawsky, F. Infed, and M. Auweter-Kurtz. Preconditioned newton-method for computing supersonic and hypersonic nonequilibrium flows. AIAA-Paper 2003-3702, 16th AIAA Computational Fluid Dynamics Conference, Orlando, Florida, 2003.Google Scholar
  14. 14.
    S.V. Patanka. Numerical Heat Transfer and Fluid Flow. Taylor & Francis, 1980.Google Scholar
  15. 15.
    J.R. Shewshuk. An introduction to the conjugate gradient method without the agonizing pain. Available by anonymous FTP to WARP.CS.CMU.EDU as quake-papers/, August 1994.Google Scholar
  16. 16.
    J.R. Shewshuk and O. Ghattas. A compiler for parallel finite element methods with domain-decomposed unstructured meshes. In D.E. Keyes and J. Xu, editors, Scientific and Engineering Computing, volume 180, pages 445–450. American Mathematical Society, 1994.Google Scholar
  17. 17.
    B. Smith, P. Bjørstad, and W. Gropp. Domain decomposition: parallel multi level methods for elliptic partial differential equations. Cambridge University Press, 1996.Google Scholar
  18. 18.
    D.A. Stewart. Determination of surface catalytic efficiency for thermal pro tection materials — room temperature to their upper use limit. AIAA-Paper 96-1863, 31st Thermophysics Conference, New Orleans, LA, 1996.Google Scholar
  19. 19.
    O.C. Zienkiewicz. The Finite Element Method. McGraw-Hill Book Company, Maidenhead Berkshire, England, 1977.MATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • M. Fertig
    • 1
  • F. Infed
    • 1
  • F. Olawsky
    • 1
  • M. Auweter-Kurtz
    • 1
  • P. Adamidis
    • 2
  1. 1.Institute of Space SystemsStuttgartGermany
  2. 2.Rechenzentrum der Universität StuttgartStuttgartGermany

Personalised recommendations