Numerical High Lift Research II/III

  • S. Melber-Wilkending
  • A. Stürmer
  • E. Stumpf
  • J. Wild
  • R. Rudnik
Conference paper


The project NHLRes ([1], [2]) is concerned with the simulation of aircraft aerodynamics and thus belongs to the research field of computational fluid dynamics (CFD) for aerospace applications. NHLRes comprises the numerical simulation of the viscous flow around transport aircraft high lift configurations based on the solution of the Reynolds-averaged Navier-Stokes equations. The project NHLRes consists of five parts representing the analysis of complex 3D-flow features, wake vortex simulation, optimization for three-dimensional high lift flow, aerodynamic interactions between the propeller and high lift wings and finally the usage of large eddy simulation (LES) of the flow around high lift configurations.


Large Eddy Simulation High Lift RANS Calculation Hybrid Grid Propeller Wake 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Melber, S.; Wild, J.; Rudnik, R.: Numerical High Lift Research-NHLRes. Annual Review 2001. High Performance Computing in Science and Engineering’ 02, Springer-Verlag Berlin, Heidelberg, New York, 2002, pp. 406–421.Google Scholar
  2. 2.
    Melber-Wilkending, S.: Stumpf, E.: Wild, J.: Rudnik, R.: “Numerical High Lift Research II-NHLRes II.” High Performance Computing in Science and Engineering’ 03, Springer-Verlag Berlin, Heidelberg, New York, 2003, pp. 315–330.Google Scholar
  3. 3.
    Kiock, R.: The ALVAST Model of DLR. DLR IB 129-96/22, 1996.Google Scholar
  4. 4.
    Kallinderis, Y.: Hybrid Grids and Their Applications. Handbook of Grid Generation, CRC Press, Boca Raton / London / New York / Washington, D.C., pp. 25-1–25-18, 1999.Google Scholar
  5. 5.
    Kroll, N.; Rossow, C.-C.; Becker, K.; Thiele, F.: MEGAFLOW-A Numerical Flow Simulation System. 21st ICAS congress, 1998, Melbourne, 13.09–18.09.1998, ICAS-98-2.7.4, 1998.Google Scholar
  6. 6.
    Melber, S.; Heinrich, R.: Implementierung einer Praekonditionierungstechnik für Strömungen kleiner Mach-Zahlen im DLR TAU-Code und Anwendung im Hochauftrieb. 13th AG STAB/DGLR Symposium München, 12.–14. November 2002.Google Scholar
  7. 7.
    Radespiel, R.; Turkel, E.; Kroll, N.: Assessment of Preconditioning Methods. DLR IB 95/29, 1995.Google Scholar
  8. 8.
    Rogers, S.E.; Roth, K.: CFD Validation of high lift Flows with significant Wind-Tunnel Effects. AIAA paper 2000-4218, 2000.Google Scholar
  9. 9.
    Melber-Wilkending, S.: “Modifikation der Triebwerksrandbedingung und Einfuehrung einer Windkanalrandbedingung in TAU” DLR IB 124-2003/7, 2002.Google Scholar
  10. 10.
    E. Stumpf: Numerical Study of Four-Vortex Aircraft Wakes and Layout of Corresponding high lift Configurations. AIAA 2004-1067, 42nd AIAA Aerospace Sciences Meeting and Exhibit, Reno, 2004.Google Scholar
  11. 11.
    Ortega, J.M.: Stability Characteristics of Counter-Rotating Vortex-Pairs in the Wakes of Triangular-Flapped Airfoils. Dissertation, Univ. of California, Berkeley, 2001.Google Scholar
  12. 12.
    Coton, P.: Charactérisation et Modélisation du Sillage d’un Avion à partir d’Essais en Vol de Marquettes en Laboratoire. AGARD CP-584, 1996, pp. 29-1 to 29-12.Google Scholar
  13. 13.
    Stuff, R.: Relationship between Near-and Farfield of Vortex Wakes from Air craft with High-Aspect Ratio Wings. Notes Num.Fluid Mech., Vol. 77, 2002, pp. 58–65.Google Scholar
  14. 14.
    Rossow, V.J.: Lift-Generated Vortex Wakes of Subsonic Transport Aircraft. Progr. Aerospace Sci., Vol. 35, No. 6, 1999, pp. 507–660.CrossRefGoogle Scholar
  15. 15.
    Domradzki, J.A.; Xiao, Z.: Smolarkiewicz, P.K.: Effective viscosities in implicit modelling of turbulent flows submitted to Phys.Fluids, 2003.Google Scholar
  16. 16.
    P.K. Smolarkiewicz, L.G. Margolin: MPDATA: A finite-difference solver for geophysical flows. J. Computational Physics, No. 140, pp. 459–479, 1998.MATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    Boris, J.P.; Grinstein, F.F.; Oran, E.S.; Kolbe, R.L.: New insights into large eddy simulation. Fluid Dyn. Research, Vol. 10, 1992, pp. 199–228.CrossRefGoogle Scholar
  18. 18.
    Dörnbrack, A.; Stumpf, E.; Prusa, J.M.: Smolarkiewicz, P.K.: Two and three dimensional vortex decay simulated by nonoscillatory forward-in-time schemes. in proceed. EuroMech Colloquium, 433, Aachen, Germany, 2002.Google Scholar
  19. 19.
    Fabre, D., personal comunication, 2003.Google Scholar
  20. 20.
    R. Steijl: Computational Study of Vortex Pair Dynamics. Ph.D. thesis, University of Twente, Netherlands, 2001.Google Scholar
  21. 21.
    Wild, J.: Acceleration of Aerodynamic Optimization based on RANS-Equations by using Semi-Structured Grids. To be published: Computational Methods in Applied Mechanics and Engineering, Elsevier.Google Scholar
  22. 22.
    Brodersen, O., Hepperle, M., Ronzheimer, A., Rossow, C.-C., and Schöning, B.: The Parametric Grid Generation System MegaCads. In Soni, B., Thompson, J., Häuser, J., and Eiseman, P., (Ed.), 5th International Conference on Numerical Grid Generation in Computational Field Simulation, pp. 353–362: National Science Foundation (NSF), 1996.Google Scholar
  23. 23.
    Schöberl, J.: NETGEN-An advancing front 2D/3D-mesh generator based on abstract rules. Computing and Visualization in Science, Vol. 1, pp. 41–52, 1997.MATHCrossRefGoogle Scholar
  24. 24.
    Spalart, P. and Allmaras, S.: A One-Equation Turbulence Model for Aerodynamic Flows. Paper 92-0439, AIAA, 1992.Google Scholar
  25. 25.
    Edwards, J. and Chandra, S.: Comparison of Eddy Viscosity-Transport Turbulence Models for Three-Dimensional, Shock-Separated Flowfields. Journal of Aircraft, Vol. 34 (Nr. 4), pp. 756–763, 1996.Google Scholar
  26. 26.
    Schmitt, V. and Charpin, F.: Pressure Distributions on the ONERA-M6-Wing at Transonic Mach Numbers. AR 138, AGARD, 1979.Google Scholar
  27. 27.
    Wild, J.: Validation of Numerical Optimization of high lift Multi-Element Airfoils based on Navier-Stokes-Equations. Paper 2000-2939, AIAA, 2000.Google Scholar
  28. 28.
    Rowan, T.: Functional Stability Analysis of Numerical Algorithms. Dissertation, Department of Computer Sciences, University of Texas at Austin, USA, 1990.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • S. Melber-Wilkending
    • 1
  • A. Stürmer
    • 1
  • E. Stumpf
    • 1
  • J. Wild
    • 1
  • R. Rudnik
    • 1
  1. 1.Institute of Aerodynamics and Flow TechnologyDLR BraunschweigBraunschweigGermany

Personalised recommendations