Enhanced Mixing in Supersonic Combustion

  • Fernando Schneider
  • Peter Gerlinger
  • Manfred Aigner
Conference paper


To control the reaction progress in supersonic combustors the fuel/air mixing has to be optimized which is investigated numerically in this paper. The mixing process is strongly influenced by the design of the fuel strut injector. Optimization studies may help to improve the mixing efficiency of real size scramjet (supersonic combustion ramjet) engines. The strut design used in this paper is the result of previous experimental and numerical investigations [1, 2, 3]. It has been verified that the use of lobed strut injectors improves the mixing by generation of streamwise vortices in the core region of the combustion chamber. The present study compares two different nozzle exit designs using basically the same strut shape. 295 K cold hydrogen is injected with Mach 2.0 into a 1300 K hot Mach 2.0 supersonic air flow.


Combustion Chamber Ignition Delay AIAA Paper Streamwise Vortex Laval Nozzle 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Gerlinger, P., Kasal, P., and Stoll, P.: Experimental and Theoretical Investigation on 2D and 3D Parallel Hydrogen/Air Mixing in a Supersonic Flow. ISABE paper 2001-1019 (2001)Google Scholar
  2. 2.
    Stoll, P.: Entwicklung eines parallelen Mehrgitterverfahrens zur Simulation der Verbrennung in kompressiblen und inkompressiblen Strömungen. VDI Forts.-Ber., Nr. 411, Reihe 7, Strömungstechnik (2001)Google Scholar
  3. 3.
    Schneider, F., Gerlinger, P., Aigner, M.: 3D Simulations of Supersonic Reacting Flows. High Performance Computing in Science and Engineering’ 03, 267–276 Springer-Verlag, (2003)Google Scholar
  4. 4.
    Coakley, T. J., Huang, P. G.: Turbulence Modeling for High Speed Flows. AIAA-Paper 92-0436, (1992)Google Scholar
  5. 5.
    Gerlinger, P., Stoll, P., Brüggemann, D.: An Implicit Multigrid Method for the Simulation of Chemically Reacting Flows. J. Comp. Phys. 146 (1998) 322–345MATHCrossRefGoogle Scholar
  6. 6.
    Gerlinger, P., Möbus, H., Brüggemann, D.: An Implicit Multigrid Method for Turbulent Combustion. J. Comp. Phys. 167 (2001) 247–276MATHCrossRefGoogle Scholar
  7. 7.
    Jameson, A., Yoon, S.: An LU-SSOR Scheme for the Euler and Navier-Stokes Equations. AIAA paper 87-0600 (1987)Google Scholar
  8. 8.
    Sunami, T., Wendt, Michael N., Nishioka, M.: Supersonic Mixing and Combus tion Control Using Streamwise Vortices. AIAA paper 98-3271, (1998)Google Scholar
  9. 9.
    Sunami, T. and Scheel, F.: Analysis of Mixing Enhancement Using Streamwise Vortices in a Supersonic Combustor by Application of Laser Diagnostics. AIAA paper 2002-203, (2002)Google Scholar
  10. 10.
    Eklund, D. R., Stouffer, S. D.: A Numerical and Experimental Study of a Super sonic Combustor Employing Swept Ramp Fuel Injectors. AIAA paper 94-2819, (1994)Google Scholar
  11. 11.
    Baurle, R. A., Mathur, T., Gruber, M. R., Jackson, K. R.: A Numerical and Experimental Investigation of a Scramjet Combustor for Hypersonic Missile Applications. AIAA paper 98-3121, (1998)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Fernando Schneider
    • 1
  • Peter Gerlinger
    • 1
  • Manfred Aigner
    • 1
  1. 1.Institut für VerbrennungstechnikDLR StuttgartStuttgartGermany

Personalised recommendations