Large-eddy Simulation of Incompressible Flow Around a Sphere with Trip Wire at Re = 50 000

  • M. Torlak
  • G. Jensen
  • I. Hadžić


In this work the large-eddy simulation (LES) is used to investigate incompressible flow around a sphere with trip wire. The sphere is located in a channel with square cross-section, and the bulk Reynolds number is Re = 50 000. The computational effort implied by demands for sufficient spatial and temporal resolution of the flow structures requires parallel runs on a high-performance computer. The numerical results are compared to the experimental ones in order to provide reliable data for testing, calibrating and improvement of statistical turbulence models. The time-averaged LES-results and the measured data obtained by the laser-Doppler-anemometry (LDA) for the velocity and the Reynolds-stress components are in reasonable agreement. Accuracy of the predicted mean-flow velocity component is particularly good. Comparison of the Reynolds stresses shows certain deviations in the far wake, agreement is however acceptable from the qualitative point of view.


Reynolds Stress Local Refinement Smooth Sphere Single Program Multiple Data Frontal Stagnation Point 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Comet, Version 2.000 — User Manual. CD adapco Group, 2000.Google Scholar
  2. 2.
    V. Bakić. Experimental investigation of turbulent flows around a sphere. PhD thesis, TU Hamburg-Harburg, Arbeitsbereiche Schiffbau, Bericht 621, 2003.Google Scholar
  3. 3.
    I. Demirdžié and S. Muzaferija. Numerical method for coupled fluid flow, heat transfer and stress analysis using unstrucutred moving meshes with cells of arbitrary topology. Comput. Methods Appl. Mech. Engrg., 125:235–255, 1995.CrossRefGoogle Scholar
  4. 4.
    I. Hadžić, V. Bakić, M. Perić, V. Šajn, and F. Kosel. Experimental and numerical studies of flow around sphere at sub-critical Reynolds number. In 5th Int. Symp. on Engineering Turbulence Modelling and Measurements, Mallorca, Spain, 16–18 Sept. 2002, 2002.Google Scholar
  5. 5.
    K. Hanjalić, I. Hadžić, and S. Jakirlić. Modelling turbulent wall flows subjected to strong pressure variations. Journal of Fluids Engineering, 125:235-, 1998.Google Scholar
  6. 6.
    M. Schmid. Grobstruktursimulation turbulenter Strömungen auf unstrukturierten Gittern mit einer parallelen Finite-Volumen Methode. PhD thesis, TU Hamburg-Harburg, Arbeitsbereiche Schiffbau, Bericht 616, 2002.Google Scholar
  7. 7.
    M. Schmid and M. Perić. Computation of turbulent flows with separation by coherent structure capturing. In E. Krause and W. Jäger, editors, High Performance Computing in Science and Engineering’ 99, pages 304–311, HLRS Stuttgart, 1999. Springer, Berlin.Google Scholar
  8. 8.
    V. Seidl. Entwicklung und Anwendung eines parallelen Finite-Volumen-Verfahrens zur Strömungssimulation auf unstyrukturierten Gittern mit lokaler Verfeinerung. PhD thesis, TU Hamburg-Harburg, Arbeitsbereiche Schiffbau, Bericht 585, 1997.Google Scholar
  9. 9.
    J. Smagorinsky. General circulation experiments with the primitive equations. I. The basic experiment. Mon. Weather Rev., 41:99–164, 1963.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • M. Torlak
    • 1
  • G. Jensen
    • 1
  • I. Hadžić
    • 1
  1. 1.AB Fluiddynamik und SchiffstheorieTU Hamburg HarburgHamburgGermany

Personalised recommendations