Chain Conformations and Phase Behavior in Confined Polymer Blends

  • A. Cavallo
  • M. Müller
  • K. Binder
Conference paper


We investigate the chain conformations and phase separation in binary polymer blends. Using large scale semi-grandcanonical Monte Carlo simulations and finite size scaling, we investigate the molecular extension and the intermolecular paircorrelation function in thin films with hard, non-preferentially adsorbing surfaces. The interplay between chain conformations, demixing and the validity of mean field theory is investigated for a large variation of chain lengths 16 ≤ N ≤ 512. Three regimes of film thickness D can be distinguished: (i) For film thicknesses much larger than the unperturbed chain extension R e, bulk behavior is observed, i.e., the critical temperature of demixing T c increases linearly with chain length, and the mean field theory becomes asymptotically correct for large N. (ii) For DR e, the critical temperature scales linearly, T cN, but the mean field theory overestimates the prefactor even in the limit N → ∞ (iii) For ultrathin films, the chain conformations are quasi-two-dimensional, T c ∼ √N and mean field theory completely fails.


Monte Carlo Chain Extension Chain Conformation Ultrathin Film Finite Size Scaling 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    R.W. Cahn, P. Haasen and E.J. Kramer, Materials Science and Technology, A Comprehensive Treatment, Vol 12, VCH, Weinheim (1993). F. Garbassi, M. Morra and E. Occhiello, Polymer Surface: From Physics to Technology, Wiley, Chichester (2000).Google Scholar
  2. 2.
    C. Creton, E.J. Kramer and G. Hadziioannou, Macromolecules 24, 1846 (1991).CrossRefGoogle Scholar
  3. 3.
    G.I. Taylor, Proc.R.Soc. London, A 138, 41 (1932).Google Scholar
  4. 4.
    S.T. Milner, MRS Bull. 22, 38 (1997).Google Scholar
  5. 5.
    M. Müller, K. Katsov and M. Schick, J. Polym. Sci. B 41, Polym.Phys. 1441 (2003).Google Scholar
  6. 6.
    I. Carmesin and K. Kremer, Macromolecules 21, 2819 (1988); H.-P. Deutsch and K. Binder, J.Chem.Phys. 94, 2294 (1991).CrossRefGoogle Scholar
  7. 7.
    V. Tries, W. Paul, J. Baschnagel and K. Binder, J. Chem. Phys. 106, 738 (1997).CrossRefGoogle Scholar
  8. 8.
    M. Müller, K. Binder, Macromolecules 28, 1825 (1995).CrossRefGoogle Scholar
  9. 9.
    K. Kremer and K. Binder, Comp.Phys.Rep. 7, 261 (1988).CrossRefGoogle Scholar
  10. 10.
    M. Müller, Macromol. Theory Simul. 8, 343 (1999).CrossRefGoogle Scholar
  11. 11.
    M.L. Huggins, J. Chem. Phys. 9, 440 (1941); P.J. Flory, J. Chem. Phys. 9, 660 (1941).CrossRefGoogle Scholar
  12. 12.
    V.L. Ginzburg, Sov.Phys.Solid State 1, 1824 (1960); P.G. de Gennes, J.Phys.Lett. (Paris) 38, L-441 (1977); J.F. Joanny, J.Phys.A 11, L-117 (1978); K. Binder, Phys.Rev.A 29, 341 (1984).Google Scholar
  13. 13.
    E. Helfand and Y. Tagami, J. Chem. Phys. 56 3592 (1972). K.M. Hong and J. Noolandi, Macromolecules 14,727 (1981).CrossRefGoogle Scholar
  14. 14.
    P.-G. de Gennes, Scaling Concepts in Polymer Physics, Cornell University Press, Ithaca, (1979).Google Scholar
  15. 15.
    A.J. Silverberg, Colloid Interface Sci 90, 86 (1982).CrossRefGoogle Scholar
  16. 17.
    I. Carmesin and K. Kremer. J. Phys. (Paris) 51, 915 (1991).Google Scholar
  17. 18.
    B. Ostrowsky, M.A. Smith, and Y. Bar-Yam, Int. J. Mod. Phys. C8, 931 (1997).Google Scholar
  18. 19.
    L. Schaefer and C. Kappeler, J.Chem.Phys. 99 6135 (1993); L. Schaefer and C. Kappeler, J.Phys. (France) 46, 1853 (1985).CrossRefGoogle Scholar
  19. 20.
    M. Müller and K. Binder, Macromolecules, 28, 1825 (1995).CrossRefGoogle Scholar
  20. 21.
    A. Cavallo, M. Müller and K. Binder, Europhys. Lett. 61, 214 (2003).CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • A. Cavallo
    • 1
  • M. Müller
    • 1
  • K. Binder
    • 1
  1. 1.Institut für Physik, WA331Johannes Gutenberg UniversitätMainzGermany

Personalised recommendations