LES of Shock Wave/Turbulent Boundary Layer Interaction

  • M. S. Loginov
  • N. A. Adams
  • A. A. Zheltovodov


Shock-wave/turbulent-boundary-layer interaction compression-ramp flow is a canonical test configuration for statistical turbulence modeling. Extensive experimental data are available, whereas computational data focus mainly on Reynolds-averaged computations employing a wide range of turbulence models. In figure 1 basic flow features are sketched [Zhe91]. The undisturbed incoming turbulent boundary layer interacts with the shock wave, for suffi-ciently large deflection angles resulting in a separation region near the com-pression corner, and a A-shock system containing the separation region. Sub-sequently the disturbed boundary layer passes through the Prandtl-Meyer expansion near the decompression corner and finally relaxes towards a devel-oped zero-pressure-gradient boundary layer.


Wall Pressure Boundary Layer Interaction Wall Pressure Fluctuation Compression Ramp Compression Corner 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [Ada98]
    N. A. Adams. Direct numerical simulation of turbulent compression corner flow. Theor. Comp. Fluid Dyn., 12:109–129, 1998.MATHCrossRefGoogle Scholar
  2. [Ada00]
    N. A. Adams. Direct simulation of the turbulent boundary layer along a compression ramp at M = 3 and Re θ = 1685. J. Fluid Mech., 420:47–83, 2000.MATHCrossRefGoogle Scholar
  3. [DM83]
    D. S. Dolling and M. T. Murphy. Unsteadiness of the separation shock wave structure in a supersonic compression ramp flowfield. AIAA J., 12:1628–1634, 1983.CrossRefGoogle Scholar
  4. [E04]
    E. Schülein E. Development and application of the thin oil film technique for skin friction measurements in the short-duration hypersonic wind tunnel. In C. Breitsamter et al, editor, New Results in Numerical and Experimental Fluid Mechanics IV: Contributions on the 13th STAB/DGLR Symp. Munich, Germany 2002, pages 407–414. Springer-Verlag Berlin Heidelberg, 2004. Notes on Numerical Fluid Mechanics and Multidisciplinary Design, Vol. 87.Google Scholar
  5. [KD98]
    D. D. Knight and G. Degrez. Shock wave boundary layer interactions in high mach number flows — a critical survey of current CFD prediction capabilities. Technical Report AR-319, AGARD Report, 1998.Google Scholar
  6. [KYPZ03]
    D. D. Knight, H. Yan, A. Panaras, and A. A. Zheltovodov. Advances in CFD prediction of shock wave turbulent boundary layer interactions. Progress in Aerospace Sciences, 39:121–184, 2003.CrossRefGoogle Scholar
  7. [Lel92]
    S.K. Lele. Compact Finite Difference Schemes with Spectral-like Resolution. J. Comp. Rhys., 103:16–42, 1992.MATHCrossRefMathSciNetGoogle Scholar
  8. [SA03]
    S. Stolz and N. A. Adams. Large-eddy simulation of high-Reynolds-number supersonic boundary layers using the approximate deconvolution model and a rescaling and recycling technique. Rhys. Fluids, 15:2398–2412, 2003.CrossRefGoogle Scholar
  9. [SAK01]
    S. Stolz, N. A. Adams, and L. Kleiser. The approximate deconvolution model for LES of compressible flows and its appl ication to shock-turbulent-boundary-layer interaction. Rhys. Fluids, 13:2985–3001, 2001.CrossRefGoogle Scholar
  10. [Zhe91]
    A. A. Zheltovodov. Peculiarities of development and modeling possibilities of supersonic turbulent separated flows. In A.V. Dovgal V.V. Kozlov, editor, Separated Flows and Jets: IUTAM Symposium, pages 225–236. Springer-Verlag Berlin Heidelberg, 1991. Novosibirsk, USSR July 9–13, 1990.Google Scholar
  11. [ZSY83]
    A. A. Zheltovodov, E. Schülein, and V. N. Yakovlev. Development of turbulent boundary layer under conditions of mixed interaction with shock and expansion waves. Technical Report Preprint 28-83, ITAM, USSR Academy of Sciences, Novosibirsk, 1983. (in Russian).Google Scholar
  12. [ZY86]
    A. A. Zheltovodov and V. N. Yakovlev. Stages of development, flowfield structure and turbulence characteristics of compressible separated flows in the vicinity of 2-D obstacles. Technical Report Preprint 27-86, ITAM, USSR Academy of Sciences, Novosibirsk, 1986. (in Russian).Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • M. S. Loginov
    • 1
    • 2
  • N. A. Adams
    • 1
  • A. A. Zheltovodov
    • 2
  1. 1.Institute of Fluid MechanicsDresden University of TechnologyDresdenGermany
  2. 2.Institute of Theoretical and Applied MechanicsNovosibirskRussia

Personalised recommendations