LES of Shock Wave/Turbulent Boundary Layer Interaction

  • M. S. Loginov
  • N. A. Adams
  • A. A. Zheltovodov


Shock-wave/turbulent-boundary-layer interaction compression-ramp flow is a canonical test configuration for statistical turbulence modeling. Extensive experimental data are available, whereas computational data focus mainly on Reynolds-averaged computations employing a wide range of turbulence models. In figure 1 basic flow features are sketched [Zhe91]. The undisturbed incoming turbulent boundary layer interacts with the shock wave, for suffi-ciently large deflection angles resulting in a separation region near the com-pression corner, and a A-shock system containing the separation region. Sub-sequently the disturbed boundary layer passes through the Prandtl-Meyer expansion near the decompression corner and finally relaxes towards a devel-oped zero-pressure-gradient boundary layer.


Wall Pressure Boundary Layer Interaction Wall Pressure Fluctuation Compression Ramp Compression Corner 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [Ada98]
    N. A. Adams. Direct numerical simulation of turbulent compression corner flow. Theor. Comp. Fluid Dyn., 12:109–129, 1998.MATHCrossRefGoogle Scholar
  2. [Ada00]
    N. A. Adams. Direct simulation of the turbulent boundary layer along a compression ramp at M = 3 and Re θ = 1685. J. Fluid Mech., 420:47–83, 2000.MATHCrossRefGoogle Scholar
  3. [DM83]
    D. S. Dolling and M. T. Murphy. Unsteadiness of the separation shock wave structure in a supersonic compression ramp flowfield. AIAA J., 12:1628–1634, 1983.CrossRefGoogle Scholar
  4. [E04]
    E. Schülein E. Development and application of the thin oil film technique for skin friction measurements in the short-duration hypersonic wind tunnel. In C. Breitsamter et al, editor, New Results in Numerical and Experimental Fluid Mechanics IV: Contributions on the 13th STAB/DGLR Symp. Munich, Germany 2002, pages 407–414. Springer-Verlag Berlin Heidelberg, 2004. Notes on Numerical Fluid Mechanics and Multidisciplinary Design, Vol. 87.Google Scholar
  5. [KD98]
    D. D. Knight and G. Degrez. Shock wave boundary layer interactions in high mach number flows — a critical survey of current CFD prediction capabilities. Technical Report AR-319, AGARD Report, 1998.Google Scholar
  6. [KYPZ03]
    D. D. Knight, H. Yan, A. Panaras, and A. A. Zheltovodov. Advances in CFD prediction of shock wave turbulent boundary layer interactions. Progress in Aerospace Sciences, 39:121–184, 2003.CrossRefGoogle Scholar
  7. [Lel92]
    S.K. Lele. Compact Finite Difference Schemes with Spectral-like Resolution. J. Comp. Rhys., 103:16–42, 1992.MATHCrossRefMathSciNetGoogle Scholar
  8. [SA03]
    S. Stolz and N. A. Adams. Large-eddy simulation of high-Reynolds-number supersonic boundary layers using the approximate deconvolution model and a rescaling and recycling technique. Rhys. Fluids, 15:2398–2412, 2003.CrossRefGoogle Scholar
  9. [SAK01]
    S. Stolz, N. A. Adams, and L. Kleiser. The approximate deconvolution model for LES of compressible flows and its appl ication to shock-turbulent-boundary-layer interaction. Rhys. Fluids, 13:2985–3001, 2001.CrossRefGoogle Scholar
  10. [Zhe91]
    A. A. Zheltovodov. Peculiarities of development and modeling possibilities of supersonic turbulent separated flows. In A.V. Dovgal V.V. Kozlov, editor, Separated Flows and Jets: IUTAM Symposium, pages 225–236. Springer-Verlag Berlin Heidelberg, 1991. Novosibirsk, USSR July 9–13, 1990.Google Scholar
  11. [ZSY83]
    A. A. Zheltovodov, E. Schülein, and V. N. Yakovlev. Development of turbulent boundary layer under conditions of mixed interaction with shock and expansion waves. Technical Report Preprint 28-83, ITAM, USSR Academy of Sciences, Novosibirsk, 1983. (in Russian).Google Scholar
  12. [ZY86]
    A. A. Zheltovodov and V. N. Yakovlev. Stages of development, flowfield structure and turbulence characteristics of compressible separated flows in the vicinity of 2-D obstacles. Technical Report Preprint 27-86, ITAM, USSR Academy of Sciences, Novosibirsk, 1986. (in Russian).Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • M. S. Loginov
    • 1
    • 2
  • N. A. Adams
    • 1
  • A. A. Zheltovodov
    • 2
  1. 1.Institute of Fluid MechanicsDresden University of TechnologyDresdenGermany
  2. 2.Institute of Theoretical and Applied MechanicsNovosibirskRussia

Personalised recommendations