Advertisement

DNS Study of spatial discrete suction for Laminar Flow Control

  • Ralf Messing
  • Markus Kloker

Abstract

By means of spatial direct numerical simulations (DNS) based on the complete Navier-Stokes equations the effect of three-dimensional discrete suction on the spatial development of a laminar boundary-layer flow generic for the front part of a swept-back airliner wing has been investigated. The baseflow is an accelerated Falkner-Skan-Cooke boundary layer, on a swept wedge with semi-opening angle of 45° (Hartree parameter β H = 0.5) which is mainly characterised by crossflow instability. The simulations of the microscale phenomena confirm that 3-d suction at the wall can excite unstable crossflow disturbances that have to be minimised by using either slot arrays or hole arrays with high porosity, otherwise the stabilising (2-d) effect of suction is compromised. Premature transition through oversuction could be identified as a convective secondary instability of the flow field deformed by strong steady crossflow vortices emerging from the suction panel.

Keywords

Direct Numerical Simulation Suction Orifice Linear Stability Theory Hole Array Slot Suction 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bonfigli, G.; Kloker, M.: Spatial Navier-Stokes simulation of crossflow-induced transition in a 3-d boundary layer. In Nitsche, W.; Heinemann, H.-J.; Hilbig, R. (eds.), New Results in Numerical and Experimental Fluid Dynamics II. Proc. 11. AG STAB/DGLR Symposium, NNFM 72. Vieweg Verlag, Braunschweig, 1999.Google Scholar
  2. 2.
    Bulgubure, C; Arnal, D.: Dassault Falcon 50 Laminar flow flight demonstrator. In DGLR; AAAF; RAeS (eds.), Proc. First European Forum on Laminar Flow Technology, March 1992, Hamburg. DGLR-Bericht 92-06, 1992.Google Scholar
  3. 3.
    Fowell, L. R.; Antonatos, P. P.: Some Results from the X-21 A Program-Part 2: Laminar Flow Flight Test Results on the X-21 A. In Recent Developments in Boundary Layer Research. Part IV, AGARDograph 97, 1965.Google Scholar
  4. 4.
    Maddalon, D. V.: Hybrid Laminar-Flow Control Flight Research. Research and Technology, NASA, TM-4331, p. 47, 1991.Google Scholar
  5. 5.
    Maddalon, D. V.; Collier, F. S.; Montoya, L. C; Land, C. K.: Transition Flight Experiments on a Swept Wing with Suction. AIAA-89-1893, 1989.Google Scholar
  6. 6.
    Pfenninger, W.: Some Results from the X-21 A Program-Part 1: Flow Phenomena at the Leading Edge of Swept Wings. In Recent Developments in Boundary Layer Research. Part IV, AGARDograph 97, 1965.Google Scholar
  7. 7.
    Thibert, J. J.; Quast, A.; Robert, J. P.: The A320 Laminar Fin Programme. In DGLR; AAAF; RAeS (eds.), Proc. First European Forum on Laminar Flow Technology, March 1992, Hamburg. DGLR-Bericht 92-06, 1992.Google Scholar
  8. 8.
    Wassermann, P.: Direkte numerische Simulation zum querströmungsinduzierten laminar-turbulenten Umschlagprozess in einer dreidimensionalen Grenzschichtströmung. Dissertation, Institut für Aerodynamik und Gasdynamik der Universität Stuttgart, 2002.Google Scholar
  9. 9.
    Wassermann, P.; Kloker, M.: Mechanisms and passive control of crossflow-vortex induced transition in a three-dimensional boundary layer. J. Fluid Mech., 456, 49–84, 2002.MATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Ralf Messing
    • 1
  • Markus Kloker
    • 1
  1. 1.Institut für Aerodynamik und GasdynamikUniversität StuttgartStuttgartGermany

Personalised recommendations