Advertisement

Electron-doping Evolution of the Quasiparticle Band of the Cuprates

  • C. Dahnken
  • M. Potthoff
  • E. Arrigoni
  • W. Hanke
Conference paper

Abstract

We present a numerical study of the doping dependence of the spectral function of the n-type cuprates. Using cluster-perturbation theory and the self-energy-functional approach, we calculate the spectral function of the Hubbard model with next-nearest neighbor electronic hopping amplitude t′ = −0.35t and on-site interaction U = 8t at half filling and doping levels ranging from x = 0.077 to x = 0.20. We show that a comprehensive description of the single particle spectrum of the electron doped cuprates is only possible within a strongly correlated model. Weak coupling approaches that are based upon a collapse of the Mott gap by vanishing on-site interaction U are ruled out.

Keywords

Fermi Surface Spectral Function Hubbard Model Spectral Weight Quantum Monte Carlo 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    N.P. Armitage, F. Ronning, D.H. Lu, C. Kim, A. Damascelli, K.M. Shen, D.L. Feng, H. Eisaki, Z.-X. Shen, P.K. Mang, N. Kaneko, M. Greven, Y. Onose, Y. Taguchi, and Y. Tokura. Doping dependence of an n — type cuprate super conductor investigated by arpes. Phys. Rev. Lett., 88:257001, 2002.CrossRefGoogle Scholar
  2. 2.
    W. Brenig. Aspects of electron correlations in the cuprate superconductor. Phys. Rep., 251:154, 1995.CrossRefGoogle Scholar
  3. 3.
    C. Dahnken, M. Aichhorn, W. Hanke, E. Arrigoni, and M. Potthoff. Variational cluster approach to spontaneous symmetry breaking: The itinerant antiferromagnet in two dimensions. cond-mat/0309407, 2003.Google Scholar
  4. 4.
    A. Dorneich, M.G. Zacher, C. Gröber, and R. Eder. Strong coupling theory for the hubbard model. cond-mat/9909352, 1999.Google Scholar
  5. 5.
    Daniel Duffy, Alexander Nazarenko, Stephan Haas, Adriana Moreo, Jose Riera, and Elbio Dagotto. Hole doping evolution of the quasiparticle band in models of strongly correlated electrons for the high — Tc cuprates. cond-mat/9701083, 1997.Google Scholar
  6. 6.
    C. Dürr, S. Legner, R. Hayn, S.V. Borisenko, Z. Hu, A. Theresiak, M. Knupfer, M.S. Golden, J. Fink, F. Ronning, Z.-X. Shen, H. Eisaki, S. Uchida, C. Janowitz, R. Müller, R.L. Johnson, K. Rossnagel, L. Kipp, and G. Reichardt. Angle-resolved photoemission spectroscopy of sr2cuo2cl2. Phys. Rev. B, 63:014505, 2001.CrossRefGoogle Scholar
  7. 7.
    R. Eder and Y. Ohta. Photoemission spectra of the t — J model in 1 and 2D: similarities and differences. Phys. Rev. B, 56:2542, 1997.CrossRefGoogle Scholar
  8. 8.
    Heinz Endres. Physik des Hubbard-Modells zwischen einer und zwei Dimensionen. PhD thesis, 1996.Google Scholar
  9. 9.
    C. Göber, R. Eder, and W. Hanke. Anomalous low-doping phase of the hubbard model. Phys. Rev. B, 62:4336, 2000.CrossRefGoogle Scholar
  10. 10.
    C. Gröber. Dynamic Properties of Strongly Correlated Electron Systems. PhD thesis, Universität Würzburg, 1999.Google Scholar
  11. 11.
    Claudius Gros and Roser Valenti. Cluster expansion for the self-energy: A simple many-body method for interpreting the photoemission spectra of correlated fermi systems. Phys. Rev. B, 48:418–425, 1993.CrossRefGoogle Scholar
  12. 12.
    J. E. Hirsch. Stable monte carlo algorithm for fermion lattice systems at low temperatures. Phys. Rev. B, 38(16):12023–12026, December 1988.CrossRefGoogle Scholar
  13. 13.
    J. Hubbard. Proc. R. Soc. London, 276:238, 1963.CrossRefGoogle Scholar
  14. 14.
    C. Kusko, R.S. Markiewicz, M. Lindroos, and A. Bansil. Fermi surface evolu tion and collapse of the mott pseudogap in nd2−xcexcuo4. Physical Review B, 66:140513R, 2002.CrossRefGoogle Scholar
  15. 15.
    C. Lanczos. J. Res. Nat. Bur. Stand., 45:255, 1950.MathSciNetGoogle Scholar
  16. 16.
    S. LaRosa, I. Vobornik, F. Zwick, H. Berger, M. Grioni, G. Margaritondo, R.J. Kelley, M. Onellion, and A. Chubukov. Electronic structure of cuo2 planes: From insulator to superconductor. Phys. Rev. B, 56:R525–R528, 1997.CrossRefGoogle Scholar
  17. 17.
    Walter Metzner. Linked — cluster expansion around the atomic limit of the hubbard model. Phys. Rev. B, 43:8549, 1991.CrossRefGoogle Scholar
  18. 18.
    R.M. Noack, S.R. White, and D. J. Scalapino. The Density Matrix Renormalization Group for Fermion Systems. Spinger Verlag, Heidelberg, Berlin, 1994.Google Scholar
  19. 19.
    Stéphane Pairault, David Sénéchal, and A.-M. S. Tremblay. Strong — coupling expansion for the hubbard model. Phys. Rev. Lett, 80:5389, 1998.CrossRefGoogle Scholar
  20. 20.
    Stephane Pairault, David Senechal, and A. M. S. Tremblay. Strong — coupling perturbation theory of the hubbard model. Eur. Phys. J. B, 16:85, 2000.CrossRefGoogle Scholar
  21. 21.
    R. Preuss, W. Hanke, and W. von der Linden. Quasiparticle dispersion of the 2D hubbard model: From an insulator to a metal. Phys. Rev. Lett., 75:1344–1347, 1995.CrossRefGoogle Scholar
  22. 22.
    F. Ronning, C. Kim, K.M. Shen, N.P. Armitage, A. Damascelli, D.H. Lu, D.L. Feng, Z.-X. Shen, L.L. Miller, Y.-J. Kim, F. Chou, and I. Terasaki. Universality of the electronic structure from a half filled cuo2 plane. cond-mat/0209651, 2002.Google Scholar
  23. 23.
    D. Senechal, D. Perez, and M. Pioro-Ladriere. The spectral weight of the hubbard model through cluster perturbation theory. Phys. Rev. Lett., 84:522–525, 2000.CrossRefGoogle Scholar
  24. 24.
    David Senechal, Danny Perez, and Dairy Plouffe. Cluster perturbation theory for hubbard models. Phys. Rev. B, 66:075129, 2002.CrossRefGoogle Scholar
  25. 25.
    David Senechal and A.-M.S. Tremblay. Hot spots and pseudogaps for the hole-and electron-doped high-temperature superconductors. Phys. Rev. Lett., 92:126401, 2004.CrossRefGoogle Scholar
  26. 26.
    T. Tohyama and S. Maekawa. Angle — resolved photoemission in high tc cuprates from theoretical viewpoints. Supercond. Sci. Technol., 13:R17, 2000.CrossRefGoogle Scholar
  27. 27.
    B.O. Wells, Z.-X. Shen, A. Matsuura, D.M. King, M.A. Kastner, M. Greven, and R.J. Birgeneau. E versus k relations and many body effects in the model insulating copper oxide sr2cuo2cl2. Phys. Rev. Lett., 74:964–967, 1995.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • C. Dahnken
    • 1
  • M. Potthoff
    • 1
  • E. Arrigoni
    • 1
  • W. Hanke
    • 1
  1. 1.Lehrstuhl für Theoretische Physik IUniversität WürzburgWürzburg

Personalised recommendations