Skip to main content

Ab Initio Simulation of Clusters: Relativistic Effects in Structure and Bonding of Noble Metal Nanoparticles

  • Conference paper
Book cover High Performance Computing in Science and Engineering’ 04

Abstract

Resolving the atomic and electronic structures of nanoclusters represents an important preliminary for their controlled use in future nanotechnologies. Here we show through the comparison of density-functional calculations with high-resolution photoelectron spectroscopy that 1.4 nm nanoparticles of silver (negatively charged clusters of 53 to 58 atoms) are icosahedral-based structures displaying a perfect icosahedral-induced electronic shell structure for Ag 55 and slightly perturbed shell structures for the neighboring cluster sizes. At variance, 55-atom gold clusters exhibit several isomeric structures of low symmetry, with a largely diminished electronic shell structure. This surprising qualitative difference is attributed to strong relativistic bonding effects in gold.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. W. deHeer, Rev. Mod. Phys. 65, 611 (1993).

    Article  Google Scholar 

  2. T.P. Martin, Phys. Rep. 273, 199 (1996).

    Article  Google Scholar 

  3. M. Haruta, Catalysis Today 36, 153 (1997).

    Article  Google Scholar 

  4. A. Sanchez et al., J. Phys. Chem. A 103, 9574 (1999).

    Article  Google Scholar 

  5. J.F. Hainfield, Science 236, 450 (1987).

    Article  Google Scholar 

  6. W.L. Barnes et al., Nature 424, 824 (2003).

    Article  Google Scholar 

  7. C.Y. Cha et al., J. Chem. Phys. 99, 6308 (1993).

    Article  Google Scholar 

  8. H. Handschuh et al., J. Chem. Phys. 102, 6406 (1995).

    Article  Google Scholar 

  9. J. Tiggesbäumker et al., Chem. Phys. Lett. 190, 42 (1992).

    Article  Google Scholar 

  10. V. Bonacic-Koutecky et al., J. Chem. Phys. 110, 3876 (1999).

    Article  Google Scholar 

  11. H. Häkkinen et al., Phys. Rev. Lett. 89, 033401 (2002).

    Article  Google Scholar 

  12. F. Furche et al., J. Chem. Phys. 117, 6982 (2002).

    Article  Google Scholar 

  13. H. Häkkinen et al., J. Phys. Chem. A 107, 6168 (2003).

    Article  Google Scholar 

  14. X. Li et al., Science 299, 864 (2003).

    Article  Google Scholar 

  15. D. Reinhard et al., Phys. Rev. B 55, 7868 (1997).

    Article  Google Scholar 

  16. L.D. Marks, Rep.Prog.Phys. 57, 603 (1994).

    Article  Google Scholar 

  17. G. Alameddin et al., Chem. Phys. Lett. 192, 122 (1992).

    Article  Google Scholar 

  18. K.J. Taylor et al., J. Chem. Phys. 96, 3319 (1992).

    Article  Google Scholar 

  19. R. Parr and W. Yang, Density functional theory of atoms and molecules (Oxford university press, 1989)

    Google Scholar 

  20. N. Troullier, and J.L. Martins, Phys. Rev. B 43, 1993 (1991).

    Article  Google Scholar 

  21. J.P. Perdew et al., Phys. Rev. Lett. 77, 3865 (1996).

    Article  Google Scholar 

  22. R.N. Barnett and U. Landman, Phys. Rev. B 48, 2081 (1993).

    Article  Google Scholar 

  23. G. Wrigge et al., Phys.Rev. A 65, 063201 (2002).

    Article  Google Scholar 

  24. M. Astruc et al., Phys.Rev.B 66, 041404(R) (2002).

    Google Scholar 

  25. S. Krückeberg et al., Eur. Phys. J D 9, 169 (1999).

    Article  Google Scholar 

  26. A. Herlert et al., Journal of Electron Spectroscopy and Related Phenomena 106, 179 (2000).

    Article  Google Scholar 

  27. The Cambridge Cluster Database, D.J. Wales et al., see URL http://brian.ch.cam.ac.uk/CCD.html and references therein.

    Google Scholar 

  28. H.P. Cheng et al., Phys. Rev. B 43, 10647 (1991).

    Article  Google Scholar 

  29. J.M. Soler et al., Phys. Rev. B 61, 5771 (2000).

    Article  MathSciNet  Google Scholar 

  30. P. Pyykkö, Chem. Rev. 88, 563 (1988).

    Article  Google Scholar 

  31. C. Elsässer et al., J.Phys.: Condens. Mat. 2, 4371 (1990).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Moseler, M., Häkkinen, H., v. Issendorff, B. (2005). Ab Initio Simulation of Clusters: Relativistic Effects in Structure and Bonding of Noble Metal Nanoparticles. In: Krause, E., Jäger, W., Resch, M. (eds) High Performance Computing in Science and Engineering’ 04. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-26589-9_11

Download citation

Publish with us

Policies and ethics