Skip to main content

Stoffwechsel und Ernährung bei Sepsis

  • Chapter
Sepsis und MODS
  • 723 Accesses

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 4.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. Alexander JW (1998) Immunonutrition: the role of omega-3 fatty acids. Nutrition 14: 627–633

    PubMed  CAS  Google Scholar 

  2. Alexander JW, Gonce SJ, Miskell PW, Peck MD, Sax H (1989) A new model for studying nutrition in peritonitis. The adverse effect of overfeeding. Ann Surg 209: 334–340

    PubMed  CAS  Google Scholar 

  3. Alexander JW, MacMillan BG, Stinnett JD et al. (1980) Beneficial effects of aggressive protein feeding in severely burned children. Ann Surg 192: 505–517

    PubMed  CAS  Google Scholar 

  4. Arnold J, Campbell IT, Hipkin LJ et al. (1995) Manipulation of substrate utilization with somatostatin in patients with secondary multiple organ dysfunction syndrome [see comments]. Crit Care Med 23: 71–77

    PubMed  CAS  Google Scholar 

  5. Aulick LH, Wilmore DW (1979) Increased peripheral amino acid release following burn injury. Surgery 85: 560–565

    PubMed  CAS  Google Scholar 

  6. Ballmer PE, McNurlan MA, Southorn BG, Grant I, Garlick PJ (1991) Effects of human recombinant interleukin-1 beta on protein synthesis in rat tissues compared with a classical acute-phase reaction induced by turpentine. Rapid response of muscle to interleukin-1 beta. Biochem J 279:683–688

    PubMed  CAS  Google Scholar 

  7. Battistella FD, Widergren JT, Anderson JT, Siepler JK, Weber JC, MacColl K (1997) A prospective, randomized trial of intravenous fat emulsion administration in trauma victims requiring total parenteral nutrition. J Trauma 43:52–58

    PubMed  CAS  Google Scholar 

  8. Bessey PQ, Watters JM, Aoki TT, Wilmore DW (1984) Combined hormonal infusion simulates the metabolic response to injury. Ann Surg 200: 264–281

    PubMed  CAS  Google Scholar 

  9. Biolo G, Toigo G, Ciocchi B et al. (1997) Metabolic response to injury and sepsis: changes in protein metabolism. Nutrition 13: 52S–57S

    Article  PubMed  CAS  Google Scholar 

  10. Bjerke HS, Shabot MM (1992) Glucose intolerance in critically ill surgical patients: relationship to total parenteral nutrition and severity of illness. Am Surg 58: 728–731

    PubMed  CAS  Google Scholar 

  11. Blackburn GL (1989) In search of the »preferred fuel«. Nutr Clin Pract 4: 3–5

    PubMed  CAS  Google Scholar 

  12. Boekstegers P, Weidenhofer S, Kapsner T, Werdan K (1994) Skeletal muscle partial pressure of oxygen in patients with sepsis. Crit Care Med 22: 640–650

    PubMed  CAS  Google Scholar 

  13. Bower RH, Cerra FB, Bershadsky B et al. (1995) Early enteral administration of a formula (Impact) supplemented with arginine, nucleotides, and fish oil in intensive care unit patients: results of a multicenter, prospective, randomized, clinical trial [see comments]. Crit Care Med 23:436–449

    PubMed  CAS  Google Scholar 

  14. Braunschweig CL, Levy P, Sheean PM, Wang X (2001) Enteral compared with parenteral nutrition: a meta-analysis. Am J Clin Nutr 74: 534–542

    PubMed  CAS  Google Scholar 

  15. Brooks DC, Bessey PQ, Black PR, Aoki TT, Wilmore DW (1984) Post-traumatic insulin resistance in uninjured forearm tissue. J Surg Res 37: 100–107

    Article  PubMed  CAS  Google Scholar 

  16. Brooks DC, Bessey PQ, Black PR, Aoki TT, Wilmore DW (1986) Insulin stimulates branched chain amino acid uptake and diminishes nitrogen flux from skeletal muscle of injured patients. J Surg Res 40: 395–405

    Article  PubMed  CAS  Google Scholar 

  17. Calder PC (1994) Glutamine and the immune system. Clin Nutrition 13: 2–8

    CAS  Google Scholar 

  18. Charters Y, Grimble RF (1989) Effect of recombinant human tumour necrosis factor alpha on protein synthesis in liver, skeletal muscle and skin of rats. Biochem J 258:493–497

    PubMed  CAS  Google Scholar 

  19. Chen K, Okuma T, Okamura K, Torigoe Y, Miyauchi Y (1994) Glutamine-supplemented parenteral nutrition improves gut mucosa integrity and function in endotoxemic rats. JPEN 18: 167–171

    CAS  Google Scholar 

  20. Clowes GH Jr, George BC, Villee CA Jr, Saravis CA (1983) Muscle proteolysis induced by a circulating peptide in patients with sepsis or trauma. N Engl J Med 308: 545–552

    Article  PubMed  Google Scholar 

  21. Clowes GH Jr, Randall HT, Cha CJ (1980) Amino acid and energy metabolism in septic and traumatized patients. JPEN 4: 195–205

    Google Scholar 

  22. Cooney R, Owens E, Jurasinski C, Gray K, Vannice J, Vary T (1994) Interleukin-1 receptor antagonist prevents sepsis-induced inhibition of protein synthesis. Am J Physiol 267:E636–E641

    PubMed  CAS  Google Scholar 

  23. Cooney RN, Kimball SR, Vary TC (1997) Regulation of skeletal muscle protein turnover during sepsis: mechanisms and mediators. Shock 7: 1–16

    PubMed  CAS  Google Scholar 

  24. Cooney RN, Maish GO, III, Gilpin T, Shumate ML, Lang CH, Vary TC (1999) Mechanism of IL-1 induced inhibition of protein synthesis in skeletal muscle. Shock 11: 235–241

    PubMed  CAS  Google Scholar 

  25. Cuthbertson DP (1942) Post-shock metabolic response. Lancet 1: 433–437

    Google Scholar 

  26. Dahn MS, Lange MP, Jacobs LA (1988) Insulinlike growth factor 1 production is inhibited in human sepsis. Arch Surg 123: 1409–1414

    PubMed  CAS  Google Scholar 

  27. Deitrick JE, Wheldon GD, Shorr E (1948) Effects of immobilization upon various metabolic and physiologic functions of normal men. Am J Med 4: 3–36

    Article  PubMed  CAS  Google Scholar 

  28. Downey RS, Monafo WW, Karl IE, Matthews DE, Bier DM (1986) Protein dynamics in skeletal muscle after trauma: local and systemic effects. Surgery 99: 265–274

    PubMed  CAS  Google Scholar 

  29. Elwyn DH, Munro HN, Iles M, Kinney JM (1979) Changes in nitrogen balance of depleted patients with increasing infusions of glucose. Am J Clin Nutr 32: 1597–1611

    PubMed  CAS  Google Scholar 

  30. Foitzik T, Kruschewski M, Kroesen AJ, Hotz HG, Eibl G, Buhr HJ (1999) Does glutamine reduce bacterial translocation? A study in two animal models with impaired gut barrier. Int J Colorectal Dis 14: 143–149

    PubMed  CAS  Google Scholar 

  31. Fong Y, Moldawer LL, Marano M et al. (1989) Cachectin/TNF or IL-1 alpha induces cachexia with redistribution of body proteins. Am J Physiol 256: R659–R665

    PubMed  CAS  Google Scholar 

  32. Frankenfield DC, Wiles CE, III, Bagley S, Siegel JH (1994) Relationships between resting and total energy expenditure in injured and septic patients [see comments]. Crit Care Med 22: 1796–1804

    PubMed  CAS  Google Scholar 

  33. Frayn KN (1988) Fuel preferences in the septic patient: glucose or lipid? (letter). JPEN 12: 319–320

    CAS  Google Scholar 

  34. Fried RC, Bailey PM, Mullen JL, Stein TP, Crosby LO, Buzby GP (1986) Alterations in exogenous substrate metabolism in sepsis. Arch Surg 21: 173–178

    Google Scholar 

  35. Fryburg DA (1994) Insulin-like growth factor I exerts growth hormone-and insulin-like actions on human muscle protein metabolism. Am J Physiol 267: E331–E336

    PubMed  CAS  Google Scholar 

  36. Gabay C, Kushner I (1999) Acute-phase proteins and other systemic responses to inflammation [published erratum appears in N Engl J Med 1999 Apr 29; 340 (17): 1376]. N Engl J Med 340: 448–454

    Article  PubMed  CAS  Google Scholar 

  37. Galban C, Montejo JC, Mesejo A et al. (2000) An immune-enhancing enteral diet reduces mortality rate and episodes of bacteremia in septic intensive care unit patients [see comments]. Crit Care Med 28: 643–648

    PubMed  CAS  Google Scholar 

  38. Gamrin L, Essen P, Forsberg AM, Hultman E, Wernerman J (1996) A descriptive study of skeletal muscle metabolism in critically ill patients: free amino acids, energy-rich phosphates, protein, nucleic acids, fat, water, and electrolytes. Crit Care Med 24: 575–583

    PubMed  CAS  Google Scholar 

  39. Garcia-Martinez C, Lopez-Soriano FJ, Argiles JM (1993) Acute treatment with tumour necrosis factor-alpha induces changes in protein metabolism in rat skeletal muscle. Mol Cell Biochem 125: 11–18

    PubMed  CAS  Google Scholar 

  40. Gibson JN, Halliday D, Morrison WL et al. (1987) Decrease in human quadriceps muscle protein turnover consequent upon leg immobilization. Clin Sci 72: 503–509

    PubMed  CAS  Google Scholar 

  41. Giovannini I, Boldrini G, Castaguato M (1983) Respiratory quotient and patterns of substrate utilization in human sepsis and trauma. JPEN 7: 226–230

    CAS  Google Scholar 

  42. Giovannini I, Boldrini G, Castaguato M (1983) Respiratory quotient and patterns of substrate utilization in human sepsis and trauma. JPEN 7: 226–230

    CAS  Google Scholar 

  43. Gore DC, Jahoor F, Hibbert JM, DeMaria EJ (1996) Lactic acidosis during sepsis is related to increased pyruvate production, not deficits in tissue oxygen availability [see comments]. Ann Surg 224: 97–102

    Article  PubMed  CAS  Google Scholar 

  44. Green CJ, Campbell IT, O’sullivan E et al. (1995) Septic patients in multiple organ failure can oxidize infused glucose, but non-oxidative disposal (storage) is impaired. Clin Sci (Colch.) 89: 601–609

    PubMed  CAS  Google Scholar 

  45. Grimm H, Tibell A, Norrlind B, Blecher C, Wilker S, Schwemmle K (1994) Immunoregulation by parenteral lipids: impact of the n-3 to n-6 fatty acid ratio. JPEN 18:417–421

    CAS  Google Scholar 

  46. Hasselgren PO (1995) Muscle protein metabolism during sepsis. Biochem Soc Trans 23: 1019–1025

    PubMed  CAS  Google Scholar 

  47. Hasselgren PO, Fischer JE (1992) Regulation by insulin of muscle protein metabolism during sepsis and other catabolic conditions [published erratum appears in Nutrition 1993 Jan–Feb 9 (1): 28]. Nutrition 8: 434–439

    PubMed  CAS  Google Scholar 

  48. Hasselgren PO, Jagenburg R, Karlstrom L, Pedersen P, Seeman T (1984) Changes of protein metabolism in liver and skeletal muscle following trauma complicated by sepsis. J Trauma 24: 224–228

    PubMed  CAS  Google Scholar 

  49. Hasselgren PO, Warner BW, James JH, Takehara H, Fischer JE (1987) Effect of insulin on amino acid uptake and protein turnover in skeletal muscle from septic rats. Evidence for insulin resistance of protein breakdown. Arch Surg 122: 228–233

    PubMed  CAS  Google Scholar 

  50. Heller A, Koch T (1998) Pharmakologische Aspekte von mehrfach ungesättigten Fettsäuren in der parenteralen Ernährung. Anasthesiol Intensivmed Notfallmed Schmerzther 33: 77–87

    PubMed  CAS  Google Scholar 

  51. Heyland DK, MacDonald S, Keefe L, Drover JW (1998) Total parenteral nutrition in the critically ill patient: a meta-analysis. JAMA 280: 2013–2019

    Article  PubMed  CAS  Google Scholar 

  52. Heyland DK, Novak F, Drover JW, Jain M, Su X, Suchner U (2001) Should immunonutrition become routine in critically ill patients? A systematic review of the evidence. JAMA 286: 944–953

    Article  PubMed  CAS  Google Scholar 

  53. Hoshino E, Pichard C, Greenwood CE et al. (1991) Body composition and metabolic rate in rat during a continuous infusion of cachectin. Am J Physiol 260: E27–E36

    PubMed  CAS  Google Scholar 

  54. Hörkner U, Kopprasch S, Scheuch DW (1987) Auswirkungen des Endotoxinschocks der Ratte auf Energie-und Reduktions-Oxidations-Status der Leber. Z Med Lab Diagn 28: 341–345

    PubMed  Google Scholar 

  55. Iriyama K, Kihata M, Asami H, Azuma T, Suzuki H (1989) Inhibitory effects of exogenous insulin on oxidative utilization of glucose in septic rats. Int Surg 74: 81–83

    PubMed  CAS  Google Scholar 

  56. Ishibashi N, Plank LD, Sando K, Hill GL (1998) Optimal protein requirements during the first 2 weeks after the onset of critical illness [see comments]. Crit Care Med 26: 1529–1535

    PubMed  CAS  Google Scholar 

  57. Jahoor F, Shangraw RE, Miyoshi H, Wallfish H, Herndon DN, Wolfe RR (1989) Role of insulin and glucose oxidation in mediating the protein catabolism of burns and sepsis. Am J Physiol 257: E323–E331

    PubMed  CAS  Google Scholar 

  58. Jeevanandam M, Young DH, Schiller WR (1990) Glucose turnover, oxidation, and indices of recycling in severely traumatized patients. J Trauma 30: 582–589

    PubMed  CAS  Google Scholar 

  59. Kierdorf H, Maurin N, Heintz B, Kindler J, Siebert HG (1990) Eiweißkatabolie bei schwerkranken internistischen Intensivpflegepatienten — Stickstoffausscheidung und-bilanz als reproduzierbare und therapeutisch nutzbare Methode. Intensivmed 27: 193–200

    Google Scholar 

  60. Kinney JM, Duke JH Jr, Long CL, Gump FE (1970) Tissue fuel and weight loss after injury. J Clin Pathol 23(Suppl 4): 65–72

    Google Scholar 

  61. Kopprasch S, Hörkner U, Orlik H, Kemmer C, Scheuch DW (1989) Energy state, glycolytic intermediates and mitochondrial function in the liver during reversible and irreversible endotoxin shock. Biomed Biochim Acta 48: 653–659

    PubMed  CAS  Google Scholar 

  62. Kreymann G, Grosser S, Buggisch P, Gottschall C, Matthaei S, Greten H (1993) Oxygen uptake and resting energy expenditure in sepsis, sepsis syndrome and septic shock. Crit Care Med 21: 1012–1019

    PubMed  CAS  Google Scholar 

  63. Leblanc M, Garred LJ, Cardinal J et al. (1998) Catabolism in critical illness: estimation from urea nitrogen appearance and creatinine production during continuous renal replacement therapy. Am J Kidney Dis 32: 444–453

    PubMed  CAS  Google Scholar 

  64. Li J, Langkamp-Henken B, Suzuki K, Stahlgren LH (1994) Glutamine prevents parenteral nutrition-induced increases in intestinal permeability [see comments]. JPEN 18: 303–307

    CAS  Google Scholar 

  65. Ling PR, Schwartz JH, Jeevanandam M, Gauldie J, Bistrian BR (1996) Metabolic changes in rats during a continuous infusion of recombinant interleukin-1. Am J Physiol 270:E305–E312

    PubMed  CAS  Google Scholar 

  66. Long CL (1987) Fuel preferences in the septic patient: glucose or lipid? JPEN 11: 333–335

    CAS  Google Scholar 

  67. Long CL, Schaffel N, Geiger JW, Schiller WR, Blakemore WS (1979) Metabolic response to injury and illness: Estimation of energy and protein needs from indirect calorimetry and nitrogen balance. JPEN 3: 452–456

    CAS  Google Scholar 

  68. Marvin RG, McKinley BA, McQuiggan M, Cocanour CS, Moore FA (2000) Nonocclusive bowel necrosis occurring in critically ill trauma patients receiving enteral nutrition manifests no reliable clinical signs for early detection. Am J Surg 179: 7–12

    Article  PubMed  CAS  Google Scholar 

  69. Melchior JC, Raguin G, Boulier A et al. (1993) Resting energy expenditure in human immunodeficiency virus-infected patients: comparison between patients with and without secondary infections. Clin Nutrition 57: 614–619

    CAS  Google Scholar 

  70. Michie HR (1996) Metabolism of sepsis and multiple organ failure. World J Surg 20: 460–464

    Article  PubMed  CAS  Google Scholar 

  71. Michie HR, Spriggs DR, Manogue KR et al. (1988) Tumor necrosis factor and endotoxin induce similar metabolic responses in human beings. Surgery 104: 280–286

    PubMed  CAS  Google Scholar 

  72. Mizock BA (1995) Alterations in carbohydrate metabolism during stress: a review of the literature. Am J Med 98:75–84

    Article  PubMed  CAS  Google Scholar 

  73. Mizock BA (2000) Metabolic derangements in sepsis and septic shock. Crit Care Clin 16: 319–336

    Article  PubMed  CAS  Google Scholar 

  74. Moore FD (1963) The body cell mass and its supporting environment; body composition in health and disease. Philadelphia, Saunders

    Google Scholar 

  75. Moriyama S, Okamoto K, Tabira Y et al. (1999) Evaluation of oxygen consumption and resting energy expenditure in critically ill patients with systemic inflammatory response syndrome [see comments]. Crit Care Med 27:2133–2136

    PubMed  CAS  Google Scholar 

  76. Nanni G, Siegel JH, Coleman B, Fader P, Castiglione R (1984) Increased lipid fuel dependence in the critically ill septic patient. J Trauma 24: 14–30

    PubMed  CAS  Google Scholar 

  77. Pearl RH, Clowes GH Jr, Hirsch EF, Loda M, Grindlinger GA, Wolfort S (1985) Prognosis and survival as determined by visceral amino acid clearance in severe trauma. J Trauma 25: 777–783

    PubMed  CAS  Google Scholar 

  78. Peck MD, Alexander JW, Gonce SJ, Miskell PW (1989) Low protein diets improve survival from peritonitis in guinea pigs. Ann Surg 209: 448–454

    PubMed  CAS  Google Scholar 

  79. Peck MD, Ogle CK, Alexander JW (1991) Composition of fat in enteral diets can influence outcome in experimental peritonitis. Ann Surg 214: 74–82

    PubMed  CAS  Google Scholar 

  80. Pedersen P, Hasselgren PO, Angeras U et al. (1989) Protein synthesis in liver following infusion of the catabolic hormones corticosterone, epinephrine, and glucagon in rats. Metabolism 38: 927–932

    Article  PubMed  CAS  Google Scholar 

  81. Pedersen P, Saljo A, Hasselgren PO (1987) Protein and energy metabolism in liver tissue following intravenous infusion of live E. coli bacteria in rats. Circ Shock 21: 59–64

    PubMed  CAS  Google Scholar 

  82. Pedersen P, Seeman T, Hasselgren PO (1986) Protein synthesis and degradation in liver tissue following induction of septic peritonitis in rats. Acta Chir Scand 152: 29–34

    PubMed  CAS  Google Scholar 

  83. Plank LD, Connolly AB, Hill GL (1998) Sequential changes in the metabolic response in severely septic patients during the first 23 days after the onset of peritonitis [see comments]. Ann Surg 228: 146–158

    Article  PubMed  CAS  Google Scholar 

  84. Raymond RM, Klein DM, Gibbons DA, Jacobs HK, Emerson TE, Jr (1985) Skeletal muscle insulin unresponsiveness during chronic hyperdynamic sepsis in the dog. J Trauma 25: 845–855

    PubMed  CAS  Google Scholar 

  85. Rolih CA, Ober KP (1995) The endocrine response to critical illness. Med Clin North Am 79: 211–224

    PubMed  CAS  Google Scholar 

  86. Rosenblatt S, Clowes GH Jr, George BC, Hirsch E, Lindberg B (1983) Exchange of amino acids by muscle and liver in sepsis. Arch Surg 118: 167–175

    PubMed  CAS  Google Scholar 

  87. Saeed M, Carlson GL, Little RA, Irving MH (1999) Selective impairment of glucose storage in human sepsis. Br J Surg 86: 813–821

    Article  PubMed  CAS  Google Scholar 

  88. Samra JS, Summers LK, Frayn KN (1996) Sepsis and fat metabolism. Br J Surg 83: 1186–1196

    Article  PubMed  CAS  Google Scholar 

  89. Schloerb PR, Amare M (1993) Total parenteral nutrition with glutamine in bone marrow transplantation and other clinical applications (a randomized, double-blind study) [see comments]. JPEN 17: 407–413

    CAS  Google Scholar 

  90. Schunn CD, Daly JM (1995) Small bowel necrosis associated with postoperative jejunal tube feeding. J Am Coll Surg 180: 410–416

    PubMed  CAS  Google Scholar 

  91. Shangraw RE, Jahoor F, Miyoshi H et al. (1989) Differentiation between septic and postburn insulin resistance. Metabolism 38: 983–989

    Article  PubMed  CAS  Google Scholar 

  92. Siegel JH (1990) Through a glass darkly: the lung as a window to monitor oxygen consumption, energy metabolism and severity of critical illness. Clin Chem 36: 1585–1593

    PubMed  CAS  Google Scholar 

  93. Siegel JH, Cerra F, Coleman B et al. (1979) Physiological and metabolic correlations in human sepsis. Surgery 86:163–193

    PubMed  CAS  Google Scholar 

  94. Souba WW (1994) Cytokine control of nutrition and metabolism in critical illness. Curr Probl Surg 31: 577–643

    Article  PubMed  CAS  Google Scholar 

  95. Stephenson BM, Morgan AR, Salaman JR, Wheeler MH (1995) Ogilvie’s syndrome: a new approach to an old problem. Dis Colon Rectum 38: 424–427

    Article  PubMed  CAS  Google Scholar 

  96. Stoner HB, Little RA, Frayn KN, Elebute AE, Tresadern J, Gross E (1983) The effect of sepsis on the oxidation of carbohydrate and fat. Br J Surg 70: 32–35

    PubMed  CAS  Google Scholar 

  97. Streat SJ, Beddoe AH, Hill GH (1987) Aggressive nutritional support does not prevent protein loss despite fat gain in septic intensive care patients. J Trauma 27: 262–266

    PubMed  CAS  Google Scholar 

  98. Suchner U, Senftleben U (1994) Effekte der mehrfach ungesättigten Fettsäuren auf den Immunstatus: Bedeutung als Struktur-und Mediatorbausteine. Infusionsther Transfusionsmed 21: 59–70

    PubMed  CAS  Google Scholar 

  99. Tappy L, Schwarz JM, Schneiter P et al. (1998) Effects of isoenergetic glucose-based or lipid-based parenteral nutrition on glucose metabolism, de novo lipogenesis, and respiratory gas exchanges in critically ill patients [see comments]. Crit Care Med 26: 860–867

    PubMed  CAS  Google Scholar 

  100. Tiao G, Fagan J, Roegner V et al. (1996) Energy-ubiquitindependent muscle proteolysis during sepsis in rats is regulated by glucocorticoids. J Clin Invest 97: 339–348

    Article  PubMed  CAS  Google Scholar 

  101. Tremel H, Kienle B, Weilemann LS, Stehle P, Fuerst P (1994) Glutamine dipeptide-supplemented parenteral nutrition maintains intestinal function in the critically ill [see comments]. Gastroenterology 107: 1595–1601

    PubMed  CAS  Google Scholar 

  102. Uehara M, Plank LD, Hill GL (1999) Components of energy expenditure in patients with severe sepsis and major trauma: a basis for clinical care. Crit Care Med 27: 1295–1302

    PubMed  CAS  Google Scholar 

  103. Van den Berghe G, Wouters P, Weekers F et al. (2001) Intensive insulin therapy in the critically ill patients. N Engl J Med 345: 359–1367

    Google Scholar 

  104. Vary TC, Dardevet D, Grizard J et al. (1998) Differential regulation of skeletal muscle protein turnover by insulin and IGF-I after bacteremia. Am J Physiol 275: E584–E593

    PubMed  CAS  Google Scholar 

  105. Vary TC, Voisin L, Cooney RN (1996) Regulation of peptidechain initiation in muscle during sepsis by interleukin-1 receptor antagonist. Am J Physiol 271: E513–E520

    PubMed  CAS  Google Scholar 

  106. Waterlow JC, Jackson AA (1981) Nutrition and protein turnover in man. Br Med Bull 37: 5–10

    PubMed  CAS  Google Scholar 

  107. White RH, Frayn KN, Little RA, Threlfall CJ, Stoner HB, Irving MH (1987) Hormonal and metabolic responses to glucose infusion in sepsis studied by the hyperglycemic glucose clamp technique. JPEN 11: 345–353

    CAS  Google Scholar 

  108. Wilmore DW (1991) Catabolic illness. Strategies for enhancing recovery. N Engl J Med 325: 695–702

    PubMed  CAS  Google Scholar 

  109. Wolf M, Böhm S, Brand M, Kreymann G (1996) Proinflammatory cytokines interleukin-1β and tumor necrosis factor-α inhibit steady state and growth hormonestimulated IGF-I synthesis and growth hormone receptor mRNA levels in cultured rat liver cells. Eur J Endocrinol 135: 729–737

    Article  PubMed  CAS  Google Scholar 

  110. Wolfe RR (1999) Sepsis as a modulator of adaptation to low and high carbohydrate and low and high fat intakes. Eur J Clin Nutr 53(Suppl 1): S136–S142

    PubMed  Google Scholar 

  111. Wolfe RR, Allsop JR, Burke JF (1977) Experimental sepsis and glucose metabolism: time course of response. Surg Forum 28: 42–43

    PubMed  CAS  Google Scholar 

  112. Wolfe RR, Herndon DN, Jahoor F, Miyoshi H, Wolfe M (1987) Effect of severe burn injury on substrate cycling by glucose and fatty acids. N Engl J Med 317: 403–408

    PubMed  CAS  Google Scholar 

  113. Wolfe RR, Herndon DN, Peters EJ, Jahoor F, Desai MH, Holland OB (1987) Regulation of lipolysis in severely burned children. Ann Surg 206: 214–221

    PubMed  CAS  Google Scholar 

  114. Woolfson AM, Heatley RV, Allison SP (1979) Insulin to inhibit protein catabolism after injury. N Engl J Med 300:14–17

    Article  PubMed  CAS  Google Scholar 

  115. Yaqoob P (1998) Lipids and the immune response. Curr Opin Clin Nutr Metab Care 1: 153–161

    Article  PubMed  CAS  Google Scholar 

  116. Yki-Järvinen H, Sammalkorpi K, Koivisto VA (1989) Severity, duration and mechanisms of insulin resistance during acute infections. J Clin Endocrinol Metabol 69: 317–323

    Article  Google Scholar 

  117. Zamir O, Hasselgren PO, Kunkel SL, Frederick J, Higashiguchi T, Fischer JE (1992) Evidence that tumor necrosis factor participates in the regulation of muscle proteolysis during sepsis. Arch Surg 127: 170–174

    PubMed  CAS  Google Scholar 

  118. Zamir O, Hasselgren PO, O’Brien W, Thompson RC, Fischer JE (1992) Muscle protein breakdown during endotoxemia in rats and after treatment with interleukin-1 receptor antagonist (IL-1ra). Ann Surg 216: 381–385

    PubMed  CAS  Google Scholar 

  119. Zamir O, James JH, Hasselgren PO, Fischer JE (1993) Evidence that inhibition of muscle amino acid uptake during endotoxemia is not mediated by glucocorticoids. Metabolism 42: 1190–1194

    PubMed  CAS  Google Scholar 

  120. Zell R, Geck P, Werdan K, Boekstegers P (1997) TNF-alpha and IL-1 alpha inhibit both pyruvate dehydrogenase activity and mitochondrial function in cardiomyocytes: evidence for primary impairment of mitochondrial function. Mol Cell Biochem 177: 61–67

    Article  PubMed  CAS  Google Scholar 

  121. Ziegler TR, Smith RJ, Byrne TA, Wilmore DW (1993) Potential role of glutamine supplementation in nutrition support. Clin Nutrition 12(Suppl 1): 582–590

    Google Scholar 

  122. Ziegler TR, Young LS, Benfell K et al.(1992) Clinical and metabolic efficacy of glutamine-supplemented parenteral nutrition after bone marrow transplantation. A randomized, double-blind, controlled study. Ann Intern Med 116: 821–828

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer Medizin Verlag Heidelberg

About this chapter

Cite this chapter

Kreymann, K. (2005). Stoffwechsel und Ernährung bei Sepsis. In: Werdan, K., Schuster, HP., Müller-Werdan, U. (eds) Sepsis und MODS. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-26587-2_15

Download citation

  • DOI: https://doi.org/10.1007/3-540-26587-2_15

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-00004-4

  • Online ISBN: 978-3-540-26587-0

  • eBook Packages: Medicine (German Language)

Publish with us

Policies and ethics