Marker-free Detection on Microarrays

  • Matthias Vaupel
  • Andreas Eing
  • Karl-Otto Greulich
  • Jan Roegener
  • Peter Schellenberg
  • Hans Martin. Striebel
  • Heinrich F. Arlinghaus
Part of the Biological and Medical Physics, Biomedical Engineering book series (BIOMEDICAL)


Surface Plasmon Resonance Protein Spot Peptide Nucleic Acid Protein Chip Image Surface Plasmon Resonance 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Project “SCREEN” for foundations of laser based (marker-free) screening methods, for which all authors of this chapter acknowledge funding by the German Ministry of ResearchGoogle Scholar
  2. 2.
    Azzam RMA and Bashara NM, Ellipsometry and Polarized Light. North Holland Physics, 1987Google Scholar
  3. 3.
    Arwin H in: “Physical Chemistry of Biological Interfaces”, Baszkin A., Norde W. (ed.), 2000, 577–607, Marcel Dekker Inc, New YorkGoogle Scholar
  4. 4.
    Silin V, Plant A, Trends in Biotech, 1997 15: 353–359CrossRefGoogle Scholar
  5. 5.
    Sojka B, Piunno P, Wust C., Krull U., Appl. Biochem. Biotechnol. 2000 Oct, 89(1): 85–103PubMedCrossRefGoogle Scholar
  6. 6.
    Chrisey L, Lee G, O'Ferrall E, Nucleic Acids Research, 1996 24(15): 3030–3039Google Scholar
  7. 7.
    Strother T, Cai W, Zhao X, Hamers R, Lloyd M, J. Am. Chem. Soc., 2000 122(6): 1205–1209CrossRefGoogle Scholar
  8. 8.
    Greulich KO, 1998. Intrinsic fl uorescence techniques for studies on protein-protein and protein-RNA interaction in RNP Particles. In: Schenkel J (ed), Lab Manual: RNP Particles, splicing and autoimmune diseases. Springer, Heidelberg, 48–71Google Scholar
  9. 9.
    Lakowicz JR, 1983. Protein fl uorescence, Principles of fl uorescence Spectroscopy. Plenum Publishing Coorporation, New York, 354–357Google Scholar
  10. 10.
    Schwarzwald R, Greulich KO, 1988. Tyrosine fl uorescence energy transfer as a probe for protein-DNA interactions. Ber Bunsenges Phys Chem 92: 447Google Scholar
  11. 11.
    Alcala JR, Gratton E, and Prendergast FG, 1987. fl uorescence lifetime distributions in proteins. Biophys J 51: 597–604PubMedCrossRefGoogle Scholar
  12. 12.
    Petrich JW, Chang MC, McDonald DB, and Fleming GR, 1983. On the origin of nonexponential fl uorescence decay in tryptophan and its derivatives. J Am Chem Soc 105: 3815–3832CrossRefGoogle Scholar
  13. 13.
    Raghavachari N, Bao YP, Li G, Xie X, and Müuller UR, 2003. Reduction of autofl uorescence on DNA microarrays and slide surfaces by treatment with sodium borohydride. Anal Biochem 312: 101–105PubMedCrossRefGoogle Scholar
  14. 14.
    Hermanson GT, 1996. Bioconjugate Techniques. Academic Press Inc, San Diego, CAGoogle Scholar
  15. 15.
    Afanassiev V, Hanemann V, Wölfl S, 2000. Preparation of DNA and protein micro arrays on glass slides coated with an agarose film. Nucleic Acids Res 28: e66PubMedCrossRefGoogle Scholar
  16. 16.
    Peluso P, Wilson DS, Do D, Tran H, Venkatasubbaiah M, Quincy D, Heidecker B, Pointdexter K, Tolani N, Phelan M, Witte K, Jung LS, Wagner P, and Nock S, 2003. Optimizing antibody immobilization strategies for the construction of protein microarrays. Anal Biochem 312: 113–124PubMedCrossRefGoogle Scholar
  17. 17.
    Hermanson GT, Mallia AK, and Smith PK, 1992. Immobilized Affinity Ligand Techniques. Academic Press Inc., San Diego, CAGoogle Scholar
  18. 18.
    Roegener J, Lutter P, Reinhardt R, Bluggel M, Meyer HE, and Anselmetti D, 2003. Ultrasensitive Detection of Unstained Proteins in Acrylamide Gels by Native UV fl uorescence. Anal Chem 75: 157–159PubMedCrossRefGoogle Scholar
  19. 19.
    Böhm KJ, Stracke R, Mühlig P, and Unger E, 2001. Motor protein-driven unidirectional transport of micrometer-sized cargoes across isopolar microtubule arrays. Nanotechnology 12: 238–244CrossRefGoogle Scholar
  20. 20.
    Arlinghaus HF, Kwoka MP, Guo XQ, Jacobson KB, 1997. Multiplexed DNA Sequencing and Diagnostics by Hybridization with Enriched Stable Isotope Labels, Anal. Chem. 69, 1510–1517PubMedCrossRefGoogle Scholar
  21. 21.
    Jacobson KB, Arlinghaus HF, 1992. Development of Resonance Ionization Spectroscopy for DNA Sequencing and Genome Mapping, Anal. Chem. 64, 315A–328APubMedCrossRefGoogle Scholar
  22. 22.
    Jurinke C, van den Boom D, Cantor RC, Köster H, 2002. The use of MassAR-RAY technology for high throughput genotyping, Adv. Biochem. Eng. Biotechnol. 77, 57–74PubMedGoogle Scholar
  23. 23.
    Kirpekar F, Berkenkamp S, Hillenkamp F, 1999. Detection of double-stranded DNA by IR-and UV-MALDI mass spectrometry, Anal. Chem. 71, 2334–2339PubMedCrossRefGoogle Scholar
  24. 24.
    Kirpekar F, Nordho E, Larsen LK, Kristiansen K, Roepstor P, Hillenkamp F, 1998. DNA sequence analysis by MALDI mass spectrometry, Nucleic Acid Research 26(11), 2554–2559CrossRefGoogle Scholar
  25. 25.
    Little DP, Cornish TJ, O'Donnell MJ, Braun A, Cotter RJ, Köster H, 1997. MALDI on a Chip: Analysis of Arrays of Low-Femtomole to Subfemtomole Quantities of Synthetic Oligonucleotides and DNA Diagnostic Products Dispensed by a Piezoelectric Pipet., Anal. Chem. 69, 4540–4546CrossRefGoogle Scholar
  26. 26.
    O'Donnell MJ, Tang K, Köster H, Smith CL, Cantor CR, 1997. High-Density, Covalent Attachment of DNA to Silicon Wafers for Analysis by MALDI-TOF Mass Spectrometry, Anal. Chem. 69, 2438–2443CrossRefGoogle Scholar
  27. 27.
    Chakrabarti MC, Schwarz FP, 1999. Thermal stability of PNA/DNA and DNA/DNA dupexes by differential scanning calorimetry, Nucleic Acids Research 27(24), 4801–4806PubMedCrossRefGoogle Scholar
  28. 28.
    Hoheisel JD, 1997. Oligomer-chip technology, TIBTECH 15, 465–469Google Scholar
  29. 29.
    Matysiak S, Reuthner F, Hoheisel JD, 2001. Automating parallel peptide synthesis for the production of PNA library arrays, BioTechniques 31, 896–904PubMedGoogle Scholar
  30. 30.
    Nielsen PE, 1999. Applications of peptide nucleic acids, Current Opinion in Biotechnology 10, 71–75PubMedCrossRefGoogle Scholar
  31. 31.
    Nielsen PE, 1997. Peptide nucleic acid (PNA) from DNA recognition to antisense and DNA structure, Biophysical Chemistry 68, 103–108PubMedCrossRefGoogle Scholar
  32. 32.
    Ratilainen T, Holmén A, Tuite E, Nielsen PE, Nordén B, 2000. Thermodynamics of sequence-specific binding of PNA to DNA. Biochemistry, 39, 7781–7791PubMedCrossRefGoogle Scholar
  33. 33.
    Ratilainen T, Holmén A, Tuite E, Haaima G, Christensen L, Nielsen PE, Nordén B, 1998. Hybridization of peptide nucleic acid, Biochemistry 37, 12331–12342PubMedCrossRefGoogle Scholar
  34. 34.
    Ray A, Norden B, 2000. Peptide nucleic acid (PNA): medical and biotechnical applications and promise for the future, The FASEB Journal 14, 1041–1060PubMedGoogle Scholar
  35. 35.
    see articles in: Peptide Nucleic Acids: Protocols and Applications, 1999, Nielson PE, Egholm M, eds., Horizon Scientific Press, Wymondham, UKGoogle Scholar
  36. 36.
    Weiler J, Gausepohl H, Hauser N, Jensen ON, Hoheisel JD, 1997. Hybridization based DNA screening on peptide nucleic acid (PNA) oligomer arrays, Nucleic Acids Research 25(14), 2792–2799PubMedCrossRefGoogle Scholar
  37. 37.
    Arlinghaus HF, Ostrop M, Friedrichs O, Feldner J, Gunst U, Lipinsky D, 2002. DNA sequencing with ToF-SIMS, Surf. Interf. Anal. 33, 35–39CrossRefGoogle Scholar
  38. 38.
    Arlinghaus HF, Höppener C, Drexler J, 2000. TOF-SIMS Characterization of DNA and PNA Biosensor Chips, in: Secondary Ion Mass Spectrometry SIMS XII, Benninghoven, A., Bertrand, P., Migeon, H.-N., Werner, H.W., eds., Elsevier, Amsterdam, 951–954Google Scholar
  39. 39.
    Arlinghaus HF, Kwoka MN, Jacobson KB, 1997. Analysis of Biosensor Chips for Identification of Nucleic Acids, Anal. Chem. 69, 3747–3753PubMedCrossRefGoogle Scholar
  40. 40.
    Arlinghaus HF, Ostrop M, Friedrichs O, Feldner J, 2003. Genome Diagnostic with TOF-SIMS, Appl. Surf. Sci., 203–204, 689–692CrossRefGoogle Scholar
  41. 41.
    Feldner JC, Ostrop M, Friedrichs O, Sohn S, Lipinsky D, Gunst U, Sohn S, Arlinghaus HF, 2003. TOF-SIMS Investigation of the Immobilization Process of Peptide Nucleic Acids, Appl. Surf. Sci., 203–204, 722–725CrossRefGoogle Scholar
  42. 42.
    Höppener C, Drexler J, Ostrop M, Arlinghaus HF, 2000. Investigation of the Immobilization Process of Nucleic Acid, in: Secondary Ion Mass Spectrometry SIMS XII, Benninghoven, A., Bertrand, P., Migeon, H.-N., Werner, H.W., eds., Elsevier, Amsterdam, 915–918Google Scholar
  43. 43.
    Griffin TJ, Smith LM, 2000. Single-nucleotide polymorphism analysis by MALDI-TOF mass spectrometry, TIBTECH, 18, 77–84Google Scholar
  44. 44.
    Ross PL, Lee K, Belgrader P, 1997. Discrimination of single-nucleotide polymorphisms in human DNA using peptide nucleic acid probes detected by MALDI-TOF mass spectrometry, Anal. Chem. 69, 4197–4202PubMedCrossRefGoogle Scholar
  45. 45.
    Storm N, Darnhofer B, van den Boom D, Rodi CP, 2003. MALDI-TOF mass spectrometry-based SNP genotyping, Methods in Mol. Biol. 212, 241–62Google Scholar
  46. 46.
    Syvänen A, 2001. Accessing genetic variation: Genotyping single nucleotide polymorphisms, Nature Reviews 2, 930–942PubMedCrossRefGoogle Scholar
  47. 47.
    Wang J, Rivas G, Cai X, Chicharro M, Parrado C, Dontha N, Begleiter A, Mowat M, Palecek E, Nielsen PE, 1997. Detection of point mutation in p53 gene using a peptide nucleic acid biosensor, Analytica Chimica Acta 344, 111–118CrossRefGoogle Scholar
  48. 48.
    Wittung-Stafshede P, Rodahl M, Kasemo B, Nielsen P, Norden B, 2000. Detection of point mutations in DNA by PNA-based quarz-crystal biosensor, Colloids and Surfaces A: Physicochem. Eng. Aspects 174, 269–273CrossRefGoogle Scholar
  49. 49.
    Berkenkamp S, Kirpekar F, Hillenkamp F, 1998. Infrared MALDI mass spectrometry of large nucleic acids, Science 281, 260–262PubMedCrossRefGoogle Scholar
  50. 50.
    Karas M, Bachman D, Bahr U, Hillenkamp F, 1987. Int. J. Mass Spectrom. Ion Processes, 78, 53–68CrossRefGoogle Scholar
  51. 51.
    Arlinghaus HF, 2002, Static Secondary Ion Mass Spectrometry (SSIMS) in: Surface and Thin Film Analysis. Principles, Instrumentation, Applications, Bubert H, Jenett H, eds., Wiley-VCH, 86–106Google Scholar
  52. 52.
    Benninghoven A, Rüdennauer FG, Werner HW, 1987. Secondary Ion Mass Spectrometry, Wiley, New YorkGoogle Scholar
  53. 53.
    see articles in the Proceeding of Secondary Ion Mass Spectrometry SIMS II–SIMS XIIIGoogle Scholar
  54. 54.
    Vickerman JC, Briggs D, 2001. TOF-SIMS, Surface Analysis by Mass Spectrometry, IM Publication, Charlton, UKGoogle Scholar
  55. 55.
    Stapel D, Brox O, Benninghoven A, 1999. Appl. Surf. Sci. 140, 156–67CrossRefGoogle Scholar
  56. 56.
    Prewett PD, Jefferies DK, 1980. J. Phys. D 13, 1747–1755CrossRefGoogle Scholar
  57. 57.
    Niehuis E, Heller T, Feld H, Benninghoven A, 1987. J. Vac. Sci. Technol. A 5, 1243CrossRefGoogle Scholar
  58. 58.
    Karataev VI, Mamyrin BA, Shmikk DV, 1972. Sov. Phys. Techn. Phys. 16, 1177Google Scholar
  59. 59.
    Schueler BW, 1992. Microsc. Microanal. Microstruct. 3, 119Google Scholar
  60. 60.
    Iltgen K, Bendel C, Niehuis E, Benninghoven A, 1997. J. Vac. Sci. Technol. A 15, 460CrossRefGoogle Scholar
  61. 61.
    Sakurai T, Matsuo T, Matsuda H, 1985. Int. J. Mass. Spectrom. Ion Phys. 63, 273CrossRefGoogle Scholar
  62. 62.
    Schreiber F, 2000. Structure and growth of self-assembling monolayers, Progress in Surface Science 65, 151–256CrossRefGoogle Scholar
  63. 63.
    Huang E, Zhou F, Deng L, 2000. Studies of surface coverage and orientation of DNA molecules immobilized onto preformed alkanethiol self-assemled monolayers, Langmuir 16, 3272–3280CrossRefGoogle Scholar
  64. 64.
    Kröger, K., Jung, A., Barzen, C., Gaulitz, G., 2002, Versatile biosensor surface based on peptide nucleic acid with label free and total internal reflection fl uorescence detection for quantification of endocrine disruptors, Analytical Chimica Acta, 469(1), 37–48CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Matthias Vaupel
  • Andreas Eing
  • Karl-Otto Greulich
  • Jan Roegener
  • Peter Schellenberg
  • Hans Martin. Striebel
  • Heinrich F. Arlinghaus

There are no affiliations available

Personalised recommendations