Surfaces and Substrates

  • Alvaro Carrillo
  • Kunal V. Gujraty
  • Ravi S. Kane
Part of the Biological and Medical Physics, Biomedical Engineering book series (BIOMEDICAL)


Oligonucleotide Array Protein Microarrays Gold Substrate Nucleic Acid Research Surface Plasmon Resonance Imaging 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Che DP, Bao YJ, Muller UR (2001) Novel surface and multicolor charge coupled device-based fluorescent imaging system for DNA microarrays. Journal of Biomedical Optics 6: 450–456PubMedCrossRefGoogle Scholar
  2. 2.
    Raghavachari N, Bao YP, Li G, Xie X, Muller UR (2003) Reduction of autofluorescence on DNA microarrays and slide surfaces by treatment with sodium borohydride. Anal Biochem 312: 101–105PubMedCrossRefGoogle Scholar
  3. 3.
    Fodor SPA, Read JL, Pirrung MC, Stryer L, Lu AT, Solas D (1991) Light-directed, spatially addressable parallel chemical synthesis. Science 251: 767–773PubMedGoogle Scholar
  4. 4.
    Lipshutz R, Fodor SPA, Gingeras TR, Lockhart DJ (1999) High Density synthetic oligonucleotide arrays. Nature 21: 20–24Google Scholar
  5. 5.
    McGall GH, Barone AD, Duggelmann M, Fodor SPA, Gentalen E, Ngo N (1997) The Efficiency of light directed synthesis of DNA arrays on glass substrates. J Am Chem Soc 119: 5081–5090CrossRefGoogle Scholar
  6. 6.
    Graves DJ (1999) Powerful tools for genetic analysis come of age. Trends in Biotechnology 17: 127–134PubMedCrossRefGoogle Scholar
  7. 7.
    Gao X, LeProust E, Zhang H, Srivannavit O, Gulari E, Yu P, Nishiguchi C, Xiang Q, Zhou X (2001) A flexible light-directed DNA chip synthesis gated by deprotection using solution photogenerated acids. Nucleic Acids Research 29: 4744–4750PubMedCrossRefGoogle Scholar
  8. 8.
    Joos B, Kuster H, Cone R (1997) Covalent attachment of hybridizable oligonucleotides to glass supports. Anal Biochem 247: 96–101PubMedCrossRefGoogle Scholar
  9. 9.
    Hegde P, Qi R, Abernathy K, Gay C, Dharap S, Gaspard R, Hughes JE, Snesrud E, Lee N, Quakenbush J (2000) A concise guide to cDNA microarray analysis. BioTechniques 29: 548–562PubMedGoogle Scholar
  10. 10.
    Eisen MB, Browm PO (1999) DNA arrays for analysis of gene expression. Methods in Enzymology 303: 179–205PubMedCrossRefGoogle Scholar
  11. 11.
    Kumar A, Larsson O, Parodi D, Liang Z (2000) Silanized nucleic acids: a general platform for DNA immobilization. Nucleic Acids Research 28: e71PubMedCrossRefGoogle Scholar
  12. 12.
    Chrisey LA, O'Ferrall CE, Spargo BJ, Dulcey CS, Calvert JM (1996) Fabrication of patterned DNA surfaces. Nucleic Acids Research 24: 3040–3047PubMedCrossRefGoogle Scholar
  13. 13.
    Rogers Y-H, Jiang-Baucom P, Huang Z-J, Bogdanov V, Anderson S, Boyce-Janico MT (1999) Immobilization of oligonucleotides onto a glass support via disulfide bonds: a method for preparation of DNA arrays. Anal Biochem 266: 23–30PubMedCrossRefGoogle Scholar
  14. 14.
    Zammatteo N, Jeanmart L, Hamels S, Courtois S, Louette P, Hevesi L, Remacle J (2000) Comparison between different strategies of covalent attachment of DNA to glass surfaces to build DNA microarrays. Anal Biochem 280: 143–150PubMedCrossRefGoogle Scholar
  15. 15.
    Lamture JB, Beattie KL, Burke BE, Eggero HD, Ehrlich DJ, Fowler R, Hollis MA, Kosicki BB, Reich RK, Smith SR, Varma RS, Hogan ME (1994) Direct detection of nucleic acid hybridization on the surface of a charge coupled device. Nucleic Acids Research 22: 2121–2125PubMedGoogle Scholar
  16. 16.
    Dolan P, Wu Y, Ista LK, Metzenberg RL, Nelson MA, Lopez GP (2001) Robust and efficient synthetic method for forming DNA microarrays. Nucleic Acids Research 29: e107PubMedCrossRefGoogle Scholar
  17. 17.
    Blanchard AP, Kaiser RJ, Hood LE (1996) High density oligonucleotide arrays. Bio-sensors and Bioelectronics 11: 687–690CrossRefGoogle Scholar
  18. 18.
    Gray DE, Case-Green SC, Fell TS, Dobson PJ, Southern EM (1997) Ellipsometric and interferometric characterization of DNA probes immobilized on a combinatorial array. Langmuir 12: 2833–2842CrossRefGoogle Scholar
  19. 19.
    Strother T, Cai W, Zhao X, Hamers RJ, Smith LM (2000) Synthesis and characerization of DNA-modified silicon (111) surfaces. J Am Chem Soc 122: 1205–1209CrossRefGoogle Scholar
  20. 20.
    Demers LM, Ginger DS, Park SJ, Li Z, Chung SW, Mirkin CA (2002) Direct patterning of modified oligonucleotides on metals and insulators by dip-pen nanolithography. Science 296: 1836–1841PubMedCrossRefGoogle Scholar
  21. 21.
    Gilmor SD, Thiel AJ, Strother TC, Smith LM, Lagally MG (2000) Hydrophilic/hydrophobic patterned surfaces as templates for DNA arrays. Langmuir 16: 7223–7228CrossRefGoogle Scholar
  22. 22.
    Zhang H, Li Z, Mirkin CA (2002) Dip-pen nanolithography-based methodology for preparing arrays of nanostructures functionalized with oligonucleotides. Advanced Materials 14: 1472–1474CrossRefGoogle Scholar
  23. 23.
    Brockman JM, Frutos AG, Corn RM (1999) A multistep chemical modification procedure to create DNA arrays on gold surfaces for the study of protein-DNA interactions with surface plasmon resonance imaging. J Am Chem Soc 121: 8044–8051CrossRefGoogle Scholar
  24. 24.
    Guschin D, Yershov G, Zaslavsky A, Gemmell A, Shick V, Proudnikov D, Arenkov P, Mirzabekov A (1997) Manual manufacturing of oligonucleotide, DNA, and protein microchips. Anal Biochem 250: 203–211PubMedCrossRefGoogle Scholar
  25. 25.
    Proudnikov D, Timofeev E, Mirzabekov A (1998) Immobilization of DNAin polyacrylamide gel for the manufacture of DNA and DNA-oligonucleotide microchips. Anal Biochem 259: 34–41PubMedCrossRefGoogle Scholar
  26. 26.
    Timofeev EN, Kochtkova SV, Mirzabekov AD, Florentiev VL (1996) Regioselective immobilization of short oligonucleotides to acrylic copolymer gels. Nucleic Acids Research 24: 3142–3148PubMedCrossRefGoogle Scholar
  27. 27.
    Dubiley S, Kirillov E, Lysov Y, Mirzabekov A (1997) Fractionation, phosphorylation and ligating on oligonucleotide microchips to enhance sequencing by hybridization. Nucleic Acids Research 25: 2259PubMedCrossRefGoogle Scholar
  28. 28.
    Afanassiev V, Hanemann V, Wölfl S (2000) Preparation of DNA and protein microarrays on glass slides coated with an agarose film. Nucleic Acids Research 28: e66PubMedCrossRefGoogle Scholar
  29. 29.
    Egner BJ, Rana S, Smith H, Bouloc N, Frey JG, Brocklesby WS, Bradley M (1997) Tagging in combinatorial chemistry: the use of coloured and fluorescent beads. Chemical Communications 8: 735–736CrossRefGoogle Scholar
  30. 30.
    Ferguson JA, Steemers FJ, Walt DR (2000) High density fiber optic DNA random microsphere array. Anal Chem 72: 5618–5624PubMedCrossRefGoogle Scholar
  31. 31.
    Needels MC, Jones DG, Tate EH, Heinkel GL, Kochersperger LM, Dower WJ, Barrett RW, Gallop MA (1993) Generation and screening of an oligonucleotide-encoded synthetic peptide library. Proc Natl Acad Sci USA 90: 10700–10704PubMedGoogle Scholar
  32. 32.
    Ness JV, Kalbfleish S, Petrie CR, Reed MW, Tabone JC, Vermeulen NMJ (1991) A versatile solid support system for oligodeoxynucleotide probe-based hybridization assays. Nucleic Acids Research 19: 3345–3350PubMedGoogle Scholar
  33. 33.
    Walt DR (2000) Molecular biology — bead-based fiber-optic arrays. Science 287: 451–452PubMedCrossRefGoogle Scholar
  34. 34.
    Church GM, Gilbert W (1984) Genomic sequencing. Proc Natl Acad Sci USA 81: 1991–1995PubMedGoogle Scholar
  35. 35.
    Saiki RK, Walsh PS, Levenson CH, Erlich HA (1989) Genetic analysis of amplified DNA with immobilized sequence-specific oligonucleotide probes. Proc Natl Acad Sci USA 86: 6230–6234PubMedGoogle Scholar
  36. 36.
    Zhao N, Hashida H, Takahashi N, Misumi Y, Sakaki Y (1995) High-density cDNA filter analysis: a novel approach for large scale quantitative analysis of gene expression. Gene 156: 207–213PubMedCrossRefGoogle Scholar
  37. 37.
    Matson RS, Rampal J, Pentoney SL, Anderson PD, Coassin P (1995) Biopolymer synthesis on polypropylene supports: oligonucleotide arrays. Anal Biochem 224: 110–116PubMedCrossRefGoogle Scholar
  38. 38.
    Shchepinov MS, Case-Green SC, Southern EM (1997) Steric factors influencing hybridization of nucleic acids to oligonucleotide arrays. Nucleic Acids Research 25: 1155–1161PubMedCrossRefGoogle Scholar
  39. 39.
    Weiler J, Hoheisel JD (1996) Combining the preparation of oligonucleotide arrays and synthesis of high-quality primers. Anal Biochem 243: 218–227PubMedCrossRefGoogle Scholar
  40. 40.
    Kohsaka H, Taniguchi A, Richman DD, Carson DA (1993) Microtiter format gene quantification by covalent capture of competitive PCR products-application to HIV1 detection. Nucleic Acids Research 21: 3469–3472PubMedGoogle Scholar
  41. 41.
    Running JA, Urdea MS (1990) A procedure for productive coupling of synthetic oligonucleotides to polystyrene microtiter wells for hybridization capture. BioTechniques 8: 276–277PubMedCrossRefGoogle Scholar
  42. 42.
    Nikiforov TT, Rogers Y-H (1995) The use of 96-well polystyrene plates for DNA hybridization-based assays: An evaluation of different approaches to oligonu-cleotide immobilization. Anal Biochem 227: 201–209PubMedCrossRefGoogle Scholar
  43. 43.
    Butler JE, Ni L, Nessler R, Joshi DS, Suter M, Rosenberg B, Chang J, Brown WR, Cantarero LA (1992) The physical and functional behavior of capture antibodies adsorbed on polystyrene. J Immunol Meth 150: 77–90CrossRefGoogle Scholar
  44. 44.
    Butler JE, Ni L, Brown WR, Joshi KS, Chang J, Rosenberg B, Voss EW (1993) The immunochemistry of sandwich ELISAs — VI. Greater than 90% of monoclonal and 75% of polyclonal anti-fluorescyl capture antibodies (CAbs) are denatured by passive adsorption. Molecular Immunology 30: 1165–1175PubMedCrossRefGoogle Scholar
  45. 45.
    Chapman RG, Ostuni E, Liang MN, Meluleni G, Kim E, Yan L, Pier G, Warren HS, Whitesides GM (2001) Polymeric thin films that resist the adsorption of proteins and the adhesion of bacteria. Langmuir 17: 1225–1233CrossRefGoogle Scholar
  46. 46. Scholar
  47. 47.
    MacBeath G, Schreiber SL (2000) Printing proteins as microarrays for high-throughput function determination. Science 289: 1760–1763PubMedGoogle Scholar
  48. 48. Scholar
  49. 49.
    Zhu H, Bilgin M, Bangham R, Hall D, Casamayor A, Bertone P, Lan N, Jansen R, Bidlingmaier S, Houfek T, Mitchell T, Miller P, Dean R, Gerstein M, Snyder M (2001) Global analysis of protein activities using proteome chips. Science 293: 2101–2105PubMedCrossRefGoogle Scholar
  50. 50.
    Madoz-GÚrpide J, Wang H, Misek DE, Brichory F, Hanash SM (2001) Protein based microarrays: a tool for probing the proteome of cancer cells and tissues. Proteomics 1: 1279–1287PubMedCrossRefGoogle Scholar
  51. 51.
    Sreekumar A, Nyati MK, Varambally S, Barrette TR, Ghosh D, Lawrence TS, Chinnaiyan AM (2001) Profiling of cancer cells using protein microarrays: discovery of novel radiation-regulated proteins. Can Res 61: 7585–7593Google Scholar
  52. 52.
    Benters R, Niemeyer CM, Wohrle D (2001) Dendrimer-activated solid supports for nucleic acid and protein microarrays. Chembiochem 2: 686–694PubMedCrossRefGoogle Scholar
  53. 53.
    Mendoza LG, McQuary P, Mongan A, Gangadharan R, Brignac S, Eggers M (1999) High-throughput microarray-based enzyme-linked immunosorbent assay (ELISA). BioTechniques 27: 778–788PubMedGoogle Scholar
  54. 54.
    Wiese R, Belosludtsev Y, Powdrill T, Thompson P, Hogan M (2001) Simultaneous multianalyte ELISA performed on a microarray platform. Clin Chem 47: 1451–1457PubMedGoogle Scholar
  55. 55.
    Melnyk O, Duburcq X, Olivier C, Urbes F, Auriault C, Gras-Masse H (2002) Peptide arrays for highly sensitive and specific antibody-binding fluorescence assays. Bioconjugate Chem 13: 713–720CrossRefGoogle Scholar
  56. 56.
    Haab BB, Dunham MJ, Brown PO (2001) Protein microarrays for highly parallel detection and quantitation of specific proteins and antibodies in complex solutions. Genome Biology 2: research0004.1-0004.13Google Scholar
  57. 57.
    Fang Y, Frutos AG, Lahiri J (2002) Membrane protein microarrays. J Am Chem Soc 124: 2394–2395PubMedCrossRefGoogle Scholar
  58. 58.
    Cremer PS, Boxer SG (1999) Formation and spreading of lipid bilayers on planar glass supports. J Phys Chem B 103: 2554–2559CrossRefGoogle Scholar
  59. 59.
    Lahiri J, Kalai P, Frutos A, Jonas SJ, Schaeffler R (2000) Method for fabricating supported bilayer lipid membranes on gold. Langmuir 16: 7805–7810CrossRefGoogle Scholar
  60. 60.
    Fang Y, Frutos AG, Lahiri J (2002) G-protein-coupled receptor microarrays. Chem-biochem 3: 987–991Google Scholar
  61. 61.
    Hergenrother PJ, Depew KM, Schreiber SL (2000) Small-molecule microarrays: covalent attachment and screening of alcohol-containing small molecules on glass slides. J Am Chem Soc 122: 7849–7850CrossRefGoogle Scholar
  62. 62.
    MacBeath G, Koehler AN, Schreiber SL (1999) Printing small molecules as microarrays and detecting protein-ligand interactions en masse. J Am Chem Soc 121: 7967–7968CrossRefGoogle Scholar
  63. 63. Scholar
  64. 64.
    Kuruvilla FG, Shamji AF, Sternson SM, Hergenrother PJ, Schreiber SL (2002) Dissecting glucose signalling with diversity-oriented sysnthesis and small-molecule microarrays. Nature 416: 653–657PubMedCrossRefGoogle Scholar
  65. 65.
    Mooney JF, Hunt AJ, McIntosh JR, Liberko CA, Walba DM, Rogers CT (1996) Patterning of functional antibodies and other proteins by photolithography of silane monolayers. Proc Natl Acad Sci USA 93: 12287–12291PubMedCrossRefGoogle Scholar
  66. 66.
    Hodneland CD, Lee Y, Min D, Mrksich M (2002) Selective immobilization of proteins to self-assembled monolayers presenting active site-directed capture ligands. Proc Natl Acad Sci USA 99: 5048–5052PubMedCrossRefGoogle Scholar
  67. 67.
    Lahiri J, Isaacs L, Tien J, Whitesides GM (1999) A strategy for the generation of surfaces presenting ligands for studies of binding based on an active ester as a common reactive intermediate: a surface plasmon resonance study. Anal Chem 71: 777–790PubMedCrossRefGoogle Scholar
  68. 68.
    Lee K, Park S, Mirkin C, Smith J, Mrksich M (2002) Protein nanoarrays generated by dip-pen nanolithography. Science 295: 1702–1705PubMedCrossRefGoogle Scholar
  69. 69.
    Yang Z, Frey W, Oliver T, Chilkoti A (2000) Light-activated affinity micropatterning of proteins on self-assembled monolayers on gold. Langmuir 16: 1751–1758CrossRefGoogle Scholar
  70. 70.
    Bieri C, Heyse OP, Hofmann KP, Vogel H (1999) Micropatterned immobilization of a G protein-coupled receptor and direct detection of G protein activation. Nat Biotechnol 17: 1105–1108PubMedCrossRefGoogle Scholar
  71. 71.
    Kenausis GL, Vörös J, Elbert DL, Huang N, Hofer R, Ruiz-Taylor L, Textor M, Hubbell JA, Spencer ND (2000) Poly(L-lysine)-g-Poly(ethylene glycol) layers on metal oxide surfaces: attachment mechanism and effects of polymer architecture on resistance to protein adsorption. J Phys Chem B 104: 3298–3309CrossRefGoogle Scholar
  72. 72.
    Ruiz-Taylor LA, Martin TL, Wagner P (2001) X-ray photoelectron spectroscopy and radiometry studies of biotin-derivatized poly(L-lysine)-grafted-poly(ethylene glycol) monolayers on metal oxides. Langmuir 17: 7313–7322CrossRefGoogle Scholar
  73. 73.
    Harris JM, Zalipsky S (1997) Poly(ethylene glycol): chemistry and biological applications. American Chemical Society, Washington D.C.Google Scholar
  74. 74.
    Jenney CR, Anderson JM (1999) Effects of surface-coupled polyethylene oxide on human macrophage adhesion and foreign body giant cell formation in vitro. J Biomed Mater Res 44: 206–216PubMedCrossRefGoogle Scholar
  75. 75.
    Ruiz-Taylor LA, Martin TL, Zaugg FG, Witte K, Indermule P, Nock S, Wagner P (2001) Monolayers of derivatized poly(L-lysine)-grafted-poly(ethylene glycol) on metal oxides as a class of biomolecular interfaces. Proc Natl Acad Sci USA 98: 852–857PubMedCrossRefGoogle Scholar
  76. 76.
    Frederickson RM (2002) Zyomyx, protein chips: protein chemistry comes to the surface. Chem Biol 9: 763–765PubMedCrossRefGoogle Scholar
  77. 77.
    Angenendt P, Glökler J, Murphy D, Lehrach H, Cahill DJ (2002) Toward optimized antibody microarrays: a comparison of current microarray support materials. Anal Biochem 309: 253–260PubMedCrossRefGoogle Scholar
  78. 78.
    Vasiliskov AV, Timofeev EN, Surzhikov SA, Drobyshev AL, Shick VV, Mirzabekov AD (1999) Fabrication of microarray of gel-immobilized compounds on a chip by co-polymerisation. BioTechniques 27: 592–605PubMedGoogle Scholar
  79. 79.
    Arenkov P, Kukhtin A, Gemmell A, Voloshchuk S, Chupeeva V, Mirzabekov A (2000) Protein microchips: use for immunoassay and enzymatic reactions. Anal Biochem 278: 123–131PubMedCrossRefGoogle Scholar
  80. 80. HydroGel™.Google Scholar
  81. 81. Scholar
  82. 82.
    Ge H (2000) UPA, a universal protein array system for quantitative detection of protein-protein, protein-DNA, protein-RNA and protein-ligand interactions. Nucleic Acids Research 28: e3, i-viiPubMedCrossRefGoogle Scholar
  83. 83.
    de Wildt RMT, Mundy CR, Gorick BD, Tomlinson IM (2000) Antibody arrays for high-throughput screening of antibody-fantigen interactions. Nature Biotechnology 18: 989–994PubMedCrossRefGoogle Scholar
  84. 84.
    Paweletz CP, Charboneau L, Bichsel VE, Simone NL, Chen T, Gillespie JW, Emmert-Buck MR, Roth MJ, Petricoin EF, Liotta LA (2001) Reverse phase protein microarrays which capture disease progression show activation of prosurvival pathways at the cancer invasion front. Oncogene 20: 1981–1989PubMedCrossRefGoogle Scholar
  85. 85.
    Lueking A, Horn M, Eickho H, Büssow K, Lehrach H, Walter G (1999) Protein microarrays for gene expression and antibody screening. Anal Biochem 270: 103–111PubMedCrossRefGoogle Scholar
  86. 86.
    Zhu H, Klemic JF, Chang S, Bertone P, Casamayor A, Klemic KG, Smith D, Gerstein M, Reed MA, Snyder M (2000) Analysis of yeast protein kinases using protein chips. Nature Genetics 26: 283–289PubMedCrossRefGoogle Scholar
  87. 87.
    Bernard A, Michel B, Delamarche E (2001) Micromosaic immunoassays. Anal Chem 73: 8–12PubMedCrossRefGoogle Scholar
  88. 88.
    Avseenko N, Morozova TY, Atauliakhanov F, Morozov VN (2001) Immobilization of proteins in immunochemical microarrays fabricated by elecrospray deposition. Anal Chem 73: 6047–6052PubMedCrossRefGoogle Scholar
  89. 89.
    Morozocv VN, Morozova TY (1999) Electrospray deposition as a method for mass fabrication of mono-and multicomponent microarrays of biological and biologically active substances. Anal Chem 71: 3110–3117CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Alvaro Carrillo
  • Kunal V. Gujraty
  • Ravi S. Kane

There are no affiliations available

Personalised recommendations