Biomolecules and Cells on Surfaces — Fundamental Concepts

  • Kristi L. Hanson
  • Luisa Filipponi
  • Dan V. Nicolau
Part of the Biological and Medical Physics, Biomedical Engineering book series (BIOMEDICAL)


Cell Immobilization Protein Adsorption Microarray Technology Fundamental Concept Covalent Binding 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Norde, W. 2003. Colloids and interfaces in life sciences. Marcel Dekker, Monticello, NYGoogle Scholar
  2. 2.
    Haynes, C. A. and W. Norde. 1994. Globular proteins at solid/liquid interfaces. Colloids and surfaces B: Biointerfaces 2:517–566CrossRefGoogle Scholar
  3. 3.
    Derjaguin, B. V. and D. L. Landau. 1941. A theory of the stability of strongly charged lyophobic sols and the coalescence of strongly charged particles in electrolytic solution. Acta Physicochimica USSR 14:633–662Google Scholar
  4. 4.
    Verwey, E. J. W. and J. Th. G. Overbeek. 1948. Theory of stability of lyophobic colloids. Elsevier, AmsterdamGoogle Scholar
  5. 5.
    Schena, M., D. Shalon, R. W. Davis, and P. O. Brown. 1995. Quantitative monitoring of gene expression patterns with a complementary DNA microarray. Science 270:467–470PubMedGoogle Scholar
  6. 6.
    Chan, V., D. J. Graves, P. Fortina, and S. E. McKenzie. 1997. Adsorption and surface diffusion of DNA oligonucleotides at liquid/solid interfaces. Langmuir 13:320–329CrossRefGoogle Scholar
  7. 7.
    Chan, V., S. E. McKenzie, S. Surrey, P. Fortina, and D. J. Graves. 1998. Effect of Hydrophobicity and Electrostatics on Adsorption and Surface Diffusion of DNA Oligonucleotides at Liquid/Solid Interfaces. Journal of Colloid & Interface Science 203:197–207CrossRefGoogle Scholar
  8. 8.
    Ausubel, F. M., R. Brent, R. E. Kingston, D. D. Moore, J. G. Seidman, J. A. Smith, and K. Struhl. 1997. Current protocols in molecular biology. John Wiley and Sons, New YorkGoogle Scholar
  9. 9.
    Brett, A. M. O. and A.-M. Chiorcea. 2003. Atomic Force Microscopy of DNA Immobilized onto a Highly Oriented Pyrolytic Graphite Electrode Surface. Langmuir 19:3830–3839CrossRefGoogle Scholar
  10. 10.
    Zhao, Y.-D., D.-W. Pang, S. Hu, Z.-L. Wang, J.-K. Cheng, and H.-P. Dai. 1999. DNA-modified electrodes; part 4: optimization of covalent immobilization of DNA on self-assembled monolayers. Talanta 49:751–756CrossRefGoogle Scholar
  11. 11.
    Watterson, J. H., P. A. E. Piunno, C. C. Wust, and U. J. Krull. 2000. Effects of Oligonucleotide Immobilization Density on Selectivity of Quantitative Transduction of Hybridization of Immobilized DNA. Langmuir 16:4984–4992CrossRefGoogle Scholar
  12. 12.
    Franssen-van Hal, N. L. W., O. Vorst, E. Kramer, R. D. Hall, and J. Keijera. 2002. Factors in sequencing cDNA microarray hybridization on silylated glass slides. Analytical Biochemistry 308:5–17PubMedCrossRefGoogle Scholar
  13. 13.
    Stillman, B. A. and J. L. Tonkinson. 2001. Expression microarray hybridization kinetics depend on length of the immobilized DNA but are independent of immobilization substrate. Analytical Biochemistry 295:149–157PubMedCrossRefGoogle Scholar
  14. 14.
    Norde, W. 1986. Adsorption of Proteins from Solution at the Solid-Liquid Interface. Advances in Colloid and Interface Science 25:267–340PubMedCrossRefGoogle Scholar
  15. 15.
    Brash, J. L. and T. A. Horbett. 1987. Protein at interfaces: physicochemical and biochemical studies. American Chemical Society, Washington, D.C.Google Scholar
  16. 16.
    Horbett, T. A. and J. L. Brash. 1995. Protein at interfaces II: fundamentals and applications. American Chemical Society, Washington, D.C.Google Scholar
  17. 17.
    Angenendt, P., J. Glokler, D. Murphy, H. Lehrach, and D. J. Cahill. 2002. Toward optimized antibody microarrays: a comparison of current microarray support materials. Analytical Biochemistry 309:253–260PubMedCrossRefGoogle Scholar
  18. 18.
    Wilchek, M. and T. Miron. 2003. Oriented versus random protein immobilization. Journal of Biochemical and Biophysical Methods 55:67–70PubMedCrossRefGoogle Scholar
  19. 19.
    Peluso, P., D. S. Wilson, D. Do, H. Tran, M. Venkatasubbaiah, D. Quincy, B. Heidecker, K. Poindexter, N. Tolani, M. Phelan, K. Witte, L. S. Jung, P. Wagner, and S. Nock. 2003. Optimizing antibody immobilization strategies for the construction of protein microarrays. Analytical Biochemistry 312:113–124PubMedCrossRefGoogle Scholar
  20. 20.
    Asthagiri, D. and A. M. Lenhoff. 1997. Influence of Structural Details in Modeling Electrostatically Driven Protein Adsorption. Langmuir 13:6761–6768CrossRefGoogle Scholar
  21. 21.
    Ladam, G., P. Schaaf, F. J. G. Cuisinier, G. Decher, and J.-C. Voegel. 2001. Protein adsorption onto auto-assembled polyelectrolyte films. Langmuir 17:878–882CrossRefGoogle Scholar
  22. 22.
    Lestelius, M., B. Liedberg, and P. Tengvall. 1997. In Vitro Plasma Protein Adsorption on-Functionalized Alkanethiolate Self-Assembled Monolayers. Langmuir 13:5900–5908CrossRefGoogle Scholar
  23. 23.
    Sundaram, S., F. Lim, S. L. Cooper, and R. W. Colman. 1996. Role of leucocytes in coagulation induced by artificial surfaces: investigation of expression of Mac-1, granulocyte elastase release and leucocyte adhesion on modified polyurethanes. Biomaterials 17Google Scholar
  24. 24.
    Nicolau, D. V. Biomolecular adsorption database. Scholar
  25. 25.
    Nicolau, D. V. Jr. and D. V. Nicolau. 2002. A database comprising biomolec ular descriptors relevant to protein adsorption on microarray surfaces. SPIE Proceedings 3:109–116CrossRefGoogle Scholar
  26. 26.
    Nicolau, D. V. Jr. and D. V. Nicolau. 2002. A model of protein adsorption to solid surfaces from solution. In Biomedical Nanotechnology Architectures and Applications, Darryl J. Bornhop; David A. Dunn; Raymond P. Mariella; Catherine J. Murphy; Dan V. Nicolau; Shuming Nie; Michelle Palmer; Ramesh Raghavachari; Eds, Proc. SPIE Vol. 4626, 1–8, 2002Google Scholar
  27. 27.
    Nicolau, D. V. Jr., Fulga, F. and Nicolau, D. V. 2003 Impact of Protein Adsorption on the Geometry of Microfluidics Devices. Biomedical Microdevices 5:3, 227–233CrossRefGoogle Scholar
  28. 28.
    Wong, S. H. 1991. Chemistry of protein conjugation and cross-linking. CRC Press, Boca Raton, FLGoogle Scholar
  29. 29.
    Nicolau, D. V., T. Taguchi, H. Taniguchi, and S. Yoshikawa. 1999. Positive and negative tone protein patterning using conventional deep-UV/e-beam resists. Langmuir 15:3845–3851CrossRefGoogle Scholar
  30. 30.
    Seong, S. and C. Choi. 2003. Current status of protein chip development in terms of fabrication and application. Proteomics 3:2176–2189PubMedCrossRefGoogle Scholar
  31. 31.
    Vijayendran, R. A. and D. E. Leckband. 2001. A Quantitative Assessment of Heterogeneity for Surface-Immobilized Proteins. Analytical Chemistry 73:471–480PubMedCrossRefGoogle Scholar
  32. 32.
    Nakanishi, K., H. Muguruma, and I. Karube. 1996. A novel method of immobilizing antibodies on a quartz crystal microbalance using plasma-polymerized films for immunosensors. Analytical Chemistry 68:1695–1700PubMedCrossRefGoogle Scholar
  33. 33.
    Rowe, C. A., S. B. Scruggs, M. J. Feldstein, J. P. Golden, and F. S. Ligler. 1999. An Array Immunosensor for Simultaneous Detection of Clinical Analytes. Analytical Chemistry 71:433–439PubMedCrossRefGoogle Scholar
  34. 34.
    Lu, Y. J., F. Zhang, and S. F. Sui. 2002. Specific binding of integrin to RGD peptide immobilized on a nitrilotriacetic acid chip: a surface plasmon resonance study. Biochemistry (Moscow) 67:1122–1129Google Scholar
  35. 35.
    Hoffman, W. L. and D. J. O'Shannessy. 1988. Site-specific immobilization of antibodies by their oligosaccharide moieties to new hydrazide derivatized solid supports. Journal of Immunological Methods 112:113–120PubMedCrossRefGoogle Scholar
  36. 36.
    Wang, D. 2003. Carbohydrate microarrays. Proteomics 3:2167–2175PubMedCrossRefGoogle Scholar
  37. 37.
    Wang, D. and E. A. Kabat. 1996. Carbohydrate Antigens (Polysaccharides), p. 247–276. In M. H. V. Van Regenmortal (ed.), Structure of Antigens, Volume Three. CRC Press, Boca Raton, New York, London, TokyoGoogle Scholar
  38. 38.
    Hirabayashi, J., Y. Arata, and K. Kasai. 2001. Glycome project: Concept, strategy and preliminary application to Caenorhabditis elegans. Proteomics 1:295–303PubMedCrossRefGoogle Scholar
  39. 39.
    Wang, D., S. Liu, B. J. Trummer, C. Deng, and A. Wang. 2002. Carbohydrate microarrays for the recognition of cross-reactive molecular markers of microbes and host cells. Nature biotechnology 20:275–281PubMedCrossRefGoogle Scholar
  40. 40.
    Willats, W. G. T., S. E. Rasmussen, T. Kristensen, J. D. Mikkelsen, and J. P. Knox. 2002. Sugar-coated microarrays: A novel slide surface for the high-throughput analysis of glycans. Proteomics 2:1666–1671PubMedCrossRefGoogle Scholar
  41. 41.
    Folch, A. and M. Toner. 2000. Microengineering of cellular interactions. Annual review of biomedical engineering 2:227–256PubMedCrossRefGoogle Scholar
  42. 42.
    Mrksich, M. 2000. A surface chemistry approach to studying cell adhesion. Chemical Society Reviews 29Google Scholar
  43. 43.
    Palecek, S. P., J. C. Loftus, M. H. Ginsberg, D. A. Lauffenburger, and A. F. Horwitz. 1997. Integrin-ligand binding properties govern cell migration speed through cell-substratum adhesiveness. Nature 385:537–540PubMedCrossRefGoogle Scholar
  44. 44.
    Garcia, A. J., M. D. Vega, and D. Boettiger. 1999. Modulation of cell proliferation and di erentiation through substrate-dependent changes in fibronectin. Molecular biology of the cell 10:785–798PubMedGoogle Scholar
  45. 45.
    Nicolau, D. V., T. Taguchi, H. Tanigawa, and S. Yoshikawa. 1996. Control of the neuronal cell attachment by functionality manipulation of diazo-naphthoquinone/novolak photoresist surface. Biosensors and Bioelectronics 11:1237–1252CrossRefGoogle Scholar
  46. 46.
    Nicolau, D. V., T. Taguchi, H. Taniguchi, H. Tanigawa, and S. Yoshikawa. 1999. Patterning neuronal and glia cells on light-assisted functionalized photoresists. Biosensors & Bioelectronics 14:317–325CrossRefGoogle Scholar
  47. 47.
    Chen, C. S., M. Mrksich, S. Huang, G. M. Whitesides, and D. E. Ingber. 1998. Micropatterned surfaces for control of cell shape, position, and function. Biotechnology Progress 14Google Scholar
  48. 48.
    Flemming, R. G., C. J. Murphy, G. A. Abrams, S. L. Goodman, and P. F. Nealey. 1999. Effects of synthetic micro-and nano-structured surfaces on cell behavior. Biomaterials 20:573–588PubMedCrossRefGoogle Scholar
  49. 49.
    Singhvi, R., G. Stephanopoulos, and D. I. C. Wang. 1994. Review: Effects of substratum morphology on cell physiology. Biotechnology and Bioengineering 43:764–771CrossRefGoogle Scholar
  50. 50.
    Abbott, A. 2003. Biology's new dimension. Nature 424:870–872PubMedCrossRefGoogle Scholar
  51. 51.
    Weaver, V. M., O. W. Petersen, F. Wang, C. A. Larabell, P. Briand, C. Damsky, and M. J. Bissell. 1997. Reversion of the malignant phenotype of human breast cells in three-dimensional culture and in vivo by integrin blocking antibodies. The Journal of Cell Biology 137:231–245PubMedCrossRefGoogle Scholar
  52. 52.
    Wang, F., V. M. Weaver, O. W. Petersen, C. A. Larabell, S. Dedhar, P. Briand, R. Lupu, and M. J. Bissell. 1998. Reciprocal interactions between 1-integrin and epidermal growth factor receptor in three-dimensional basement membrane breast cultures: A different perspective in epithelial biology. Proceedings of the National Academy of Science 95:14821–14826CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Kristi L. Hanson
  • Luisa Filipponi
  • Dan V. Nicolau

There are no affiliations available

Personalised recommendations