Advertisement

Photoaptamer Arrays for Proteomics Applications

  • Drew Smith
  • Chad Greef
Part of the Biological and Medical Physics, Biomedical Engineering book series (BIOMEDICAL)

Keywords

Human Neutrophil Elastase Cognate Protein Microarray Format Proteomics Application SELEX Process 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Guerrier-Takada, C., Gardiner, K. J., Marsh, T. L., Pace, N. R., and Altman, S. (1983). The RNA Moiety Of RNase P Is The Catalytic Subunit Of The Enzyme. Cell 35, 849–857PubMedCrossRefGoogle Scholar
  2. 2.
    Kruger, K., Grabowski, P. J., Zaug, A. J., Sands, J., Gottschling, D. E., and Cech, T. R. (1982). Self-splicing RNA: autoexcision and autocyclization of the ribosomal RNA intervening sequence of Tetrahymena. Cell 31, 147–157PubMedCrossRefGoogle Scholar
  3. 3.
    Beaucage, S. L., and Caruthers, M. H. (1981). Studies on Nucleotide Chemistry V. Deoxynucleoside Phosphoramidites A New Class of Key Intermediates for Deoxypolynucleotide Synthesis. Tetrahedron Lett 22, 1859CrossRefGoogle Scholar
  4. 4.
    Matteucci, M. D., and Caruthers, M. H. (1981). Studies on Nucleotide Chemistry IV. Synthesis of Deoxyoligonucleotides on a Polymer Support. J Am Chem Soc 103, 3185CrossRefGoogle Scholar
  5. 5.
    Studier, F. W., and Moffatt, B. A. (1986). Use of bacteriophage T7 RNA polymerase to direct selective high-level expression of cloned genes. J Mol Biol 189, 113–130PubMedCrossRefGoogle Scholar
  6. 6.
    Baltimore, D. (1970). RNA-dependent DNA polymerase in virions of RNA tumour viruses. Nature 226, 1209–1211PubMedCrossRefGoogle Scholar
  7. 7.
    Temin, H. M., and Mizutani, S. (1970). RNA-dependent DNA polymerase in virions of Rous sarcoma virus. Nature 226, 1211–1213PubMedCrossRefGoogle Scholar
  8. 8.
    Saiki, R. K., Scharf, S., Faloona, F., Mullis, K. B., Horn, G. T., Erlich, H. A., and Arnheim, N. (1985). Enzymatic amplification of beta-globin genomic sequences and restriction site analysis for diagnosis of sickle cell anemia. Science 230, 1350–1354PubMedGoogle Scholar
  9. 9.
    Ellington, A. D., and Szostak, J. W. (1990). In vitro selection of RNA molecules that bind specific ligands. Nature 346, 818–822PubMedCrossRefGoogle Scholar
  10. 10.
    Tuerk, C., and Gold, L. (1990). Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase. Science 249, 505–510PubMedGoogle Scholar
  11. 11.
    Fitzwater, T., and Polisky, B. (1996). A SELEX primer. Methods Enzymol 267, 275–301PubMedCrossRefGoogle Scholar
  12. 12.
    Gold, L., Polisky, B., Uhlenbeck, O., and Yarus, M. (1995). Diversity of oligonucleotide functions. Annu Rev Biochem 64, 763–797PubMedCrossRefGoogle Scholar
  13. 13.
    Tuerk, C. (1997). Using the SELEX combinatorial chemistry process to find high affinity nucleic acid ligands to target molecules. Methods Mol Biol 67, 219–230PubMedGoogle Scholar
  14. 14.
    Eyetech Study Group. (2002). Preclinical and Phase 1a Clinical Evaluation of an Anti-Vegf Pegylated Aptamer (Eye001) for the Treatment of Exudative Age-Related Macular Degeneration. Retina 22, 143–152Google Scholar
  15. 15.
    Charlton, J., Sennello, J., and Smith, D. (1997). In vivo imaging of inflammation using an aptamer inhibitor of human neutrophil elastase. Chem Biol 4, 809–816PubMedCrossRefGoogle Scholar
  16. 16.
    Hicke, B. J., Marion, C., Chang, Y. F., Gould, T., Lynott, C. K., Parma, D., Schmidt, P. G., and Warren, S. (2001). Tenascin-C aptamers are generated using tumor cells and purified protein. J Biol Chem 276, 48644–48654PubMedCrossRefGoogle Scholar
  17. 17.
    Bless, N. M., Smith, D., Charlton, J., Czermak, B. J., Schmal, H., Friedl, H. P., and Ward, P. A. (1997). Protective effects of an aptamer inhibitor of neutrophil elastase in lung inflammatory injury. Curr Biol 7, 877–880PubMedCrossRefGoogle Scholar
  18. 18.
    Blind, M., Kolanus, W., and Famulok, M. (1999). Cytoplasmic RNA modulators of an inside-out signal-transduction cascade. Proc Natl Acad Sci USA 96, 3606–3610PubMedCrossRefGoogle Scholar
  19. 19.
    Hicke, B. J., Watson, S. R., Koenig, A., Lynott, C. K., Bargatze, R. F., Chang, Y. F., Ringquist, S., Moon-McDermott, L., Jennings, S., Fitzwater, T., et al. (1996). DNA aptamers block L-selectin function in vivo. Inhibition of human lymphocyte trafficking in SCID mice. J Clin Invest 98, 2688–2692PubMedGoogle Scholar
  20. 20.
    Ostendorf, T., Kunter, U., Grone, H. J., Bahlmann, F., Kawachi, H., Shimizu, F., Koch, K. M., Janjic, N., and Floege, J. (2001). Specific Antagonism of PDGF Prevents Renal Scarring in Experimental Glomerulonephritis. J Am Soc Nephrol 12, 909–918PubMedGoogle Scholar
  21. 21.
    Shi, H., Hoffman, B. E., and Lis, J. T. (1999). RNA aptamers as effective protein antagonists in a multicellular organism. Proc Natl Acad Sci USA 96, 10033–10038PubMedCrossRefGoogle Scholar
  22. 22.
    Vuyisich, M., and Beal, P. (2002). Controlling protein activity with ligand-regulated RNA aptamers. Chem Biol 9, 907PubMedCrossRefGoogle Scholar
  23. 23.
    Davis, K. A., Lin, Y., Abrams, B., and Jayasena, S. D. (1998). Staining of cell surface human CD4 with 2-F-pyrimidine-containing RNA aptamers for flow cytometry. Nucleic Acids Res 26, 3915–3924PubMedCrossRefGoogle Scholar
  24. 24.
    Homann, M., and Goringer, H. U. (1999). Combinatorial selection of high affinity RNA ligands to live African trypanosomes. Nucleic Acids Res 27, 2006–2014PubMedCrossRefGoogle Scholar
  25. 25.
    Bergan, R., Connell, Y., Fahmy, B., Kyle, E., and Neckers, L. (1994). Aptameric inhibition of p210bcr-abl tyrosine kinase autophosphorylation by oligodeoxynucleotides of defined sequence and backbone structure. Nucleic Acids Res 22, 2150–2154PubMedGoogle Scholar
  26. 26.
    Green, L. S., Bell, C., and Janjic, N. (2001). Aptamers as reagents for high-throughput screening. Biotechniques 30, 1094–1096, 1098, 1100 passimPubMedGoogle Scholar
  27. 27.
    Maurel, M. C., Biard, B., Moulinier, C., Braz, D., Nugier, J., Chaumas, I., Reboud-Ravaux, M., and Decout, J. L. (2002). RNA-acting antibiotics: invitro selection of RNA aptamers for the design of new bioactive molecules less susceptible to bacterial resistance. J Pharm Pharmacol 54, 1019–1031PubMedCrossRefGoogle Scholar
  28. 28.
    Romig, T. S., Bell, C., and Drolet, D. W. (1999). Aptamer affinity chromatography: combinatorial chemistry applied to protein purification. J Chromatogr B Biomed Sci Appl 731, 275–284PubMedCrossRefGoogle Scholar
  29. 29.
    Drolet, D. W., Moon-McDermott, L., and Romig, T. S. (1996). An enzyme-linked oligonucleotide assay. Nat Biotechnol 14, 1021–1025PubMedCrossRefGoogle Scholar
  30. 30.
    Fredriksson, S., Gullberg, M., Jarvius, J., Olsson, C., Pietras, K., Gustafsdottir, S. M., Ostman, A., and Landegren, U. (2002). Protein detection using proximity-dependent DNA ligation assays. Nat Biotechnol 20, 473–477PubMedCrossRefGoogle Scholar
  31. 31.
    Kato, T., Yano, K., Ikebukuro, K., and Karube, I. (2000). Bioassay of bile acids using an enzyme-linked DNA aptamer. Analyst 125, 1371–1373PubMedCrossRefGoogle Scholar
  32. 32.
    Rye, P. D., and Nustad, K. (2001). Immunomagnetic DN Aaptamer assay. Biotechniques 30, 290–292, 294–295PubMedGoogle Scholar
  33. 33.
    Stojanovic, M. N., and Landry, D. W. (2002). Aptamer-Based Colorimetric Probe for Cocaine. J Am Chem Soc 124, 9678–9679PubMedCrossRefGoogle Scholar
  34. 34.
    Lee, M., and Walt, D. R. (2000). A Fiber-Optic Microarray Biosensor Using Aptamers as Receptors. Anal Biochem 282, 142–146PubMedCrossRefGoogle Scholar
  35. 35.
    Bridonneau, P., Chang, Y. F., Buvoli, A. V., O'Connell, D., and Parma, D. (1999). Site-directed selection of oligonucleotide antagonists by competitive elution. Antisense Nucleic Acid Drug Dev 9, 1–11PubMedGoogle Scholar
  36. 36.
    Daniels, D. A., Sohal, A. K., Rees, S., and Grisshammer, R. (2002). Generation of RNA aptamers to the G-protein-coupled receptor for neurotensin, NTS-1. Anal Biochem 305, 214–226PubMedCrossRefGoogle Scholar
  37. 37.
    Kensch, O., Connolly, B. A., Steinho, H. J., McGregor, A., Goody, R. S.,and Restle, T. (2000). HIV-1 reverse transcriptase-pseudoknot RNA aptamer interaction has a binding affinity in the low picomolar range coupled with high specificity. J Biol Chem 275, 18271–18278PubMedCrossRefGoogle Scholar
  38. 38.
    O'Connell, D., Koenig, A., Jennings, S., Hicke, B., Han, H. L., Fitzwater, T., Chang, Y. F., Varki, N., Parma, D., and Varki, A. (1996). Calcium-dependent oligonucleotide antagonists specific for L-selectin. Proc Natl Acad Sci USA 93, 5883–5887PubMedCrossRefGoogle Scholar
  39. 39.
    Rehder, M. A., and McGown, L. B. (2001). Open-tubular capillary electrochromatography of bovine beta-lactoglobulin variants A and B using an aptamer stationary phase. Electrophoresis 22, 3759–3764PubMedCrossRefGoogle Scholar
  40. 40.
    Ruckman, J., Green, L. S., Beeson, J., Waugh, S., Gillette, W. L., Henninger, D. D., Claesson-Welsh, L., and Janjic, N. (1998). 2′-Fluoropyrimidine RNA-based aptamers to the 165-amino acid form of vascular endothelial growth factor (VEGF165). Inhibition of receptor binding and VEGF-induced vascular permeability through interactions requiring the exon 7-encoded domain. J Biol Chem 273, 20556–20567PubMedCrossRefGoogle Scholar
  41. 41.
    Cox, J. C., and Ellington, A. D. (2001). Automated selection of anti-protein aptamers. Bioorg Med Chem 9, 2525–2531PubMedCrossRefGoogle Scholar
  42. 42.
    Cox, J. C., Rajendran, M., Riedel, T., Davidson, E. A., Sooter, L. J., Bayer, T. S., Schmitz-Brown, M., and Ellington, A. D. (2002). Automated acquisition of aptamer sequences. Comb Chem High Throughput Screen 5, 289–299PubMedGoogle Scholar
  43. 43.
    Gold, L., Zichi, D., Jenison, R., and Schneider, D. WO 00/43534, Method and Apparatus for the Automated Generation of Nucleic Acid Ligands Golden, M. C., Collins, B. D., Willis, M. C., and Koch, T. H. (2000). Diagnostic potential of PhotoSELEX-evolved ssDNA aptamers. J Biotechnol 81, 167–178Google Scholar
  44. 44.
    Golden, M. C., Collins, B. D., Willis, M. C., and Koch, T. H. (2000). Diagnostic potential of PhotoSELEX-evolved ssDNA aptamers. J Biotechnol 81, 167–178PubMedCrossRefGoogle Scholar
  45. 45.
    Jensen, K. B., Atkinson, B. L., Willis, M. C., Koch, T. H., and Gold, L. (1995). Using in vitro selection to direct the covalent attachment of human immunodeficiency virus type 1 Rev protein to high-affinity RNA ligands. Proc Natl Acad Sci USA 92, 12220–12224PubMedGoogle Scholar
  46. 46.
    Brody, E. N., and Gold, L. (2000). Aptamers as therapeutic and diagnostic agents. J Biotechnol 74, 5–13PubMedGoogle Scholar
  47. 47.
    Brody, E. N., Willis, M. C., Smith, J. D., Jayasena, S., Zichi, D., and Gold, L. (1999). The use of aptamers in large arrays for molecular diagnostics. Mol Diagn 4, 381–388PubMedCrossRefGoogle Scholar
  48. 48.
    Smith, D., Collins, B. D., Heil, J., and Koch, T. H. (2003). Sensitivity and specificity of photoaptamer probes. Mol Cell Proteomics 2, 11–18PubMedCrossRefGoogle Scholar
  49. 49.
    Koch, T., Smith, D., Tabacman, E., and Zichi, D. (2004). Kinetic Analysis of Site-specific Photoaptamer-Protein Crosslinking. J Mol Biol 336: 1159–1173PubMedCrossRefGoogle Scholar
  50. 50.
    Meisenheimer, K. M., and Koch, T. H. (1997). Photocrosslinking of nucleic acids to associated proteins. Crit Rev Biochem Mol Biol 32, 101–140PubMedGoogle Scholar
  51. 51.
    Norris, C. L., Meisenheimer, K. M., and Koch, T. H. (1997). Mechanistic studies relevant to bromouridine enhanced nucleoprotein photocrosslinking. Possible involvement of an excited tyrosine residue of the protein. Photochem Photobiol 65, 201–207Google Scholar
  52. 52.
    Charlton, J., and Smith, D. (1999). Estimation of SELEX Pool Size by Measurement of DNA Renaturation Rates. RNA 5, 1326–1332PubMedCrossRefGoogle Scholar
  53. 53.
    Moreno-Bondi, M. C., Alarie, J. P., and Vo-Dinh, T. (2003). Multi-analyte analysis system using an antibody-based biochip. Anal Bioanal Chem 375, 120–124PubMedGoogle Scholar
  54. 54.
    Schweitzer, B., Roberts, S., Grimwade, B., Shao, W., Wang, M., Fu, Q., Shu, Q., Laroche, I., Zhou, Z., Tchernev, V. T., et al. (2002). Multiplexed protein profiling on microarrays by rolling-circle amplification. Nat Biotechnol 20, 359–365PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Drew Smith
  • Chad Greef

There are no affiliations available

Personalised recommendations