Protein, Antibody and Small Molecule Microarrays

  • Hendrik Weiner
  • Jörn Glökler
  • Claus Hultschig
  • Konrad Büssow
  • Gerald Walter
Part of the Biological and Medical Physics, Biomedical Engineering book series (BIOMEDICAL)


Solid Phase Synthesis Peptide Library Protein Array Protein Microarrays Antibody Array 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Walter G, Büssow K, Cahill D, Lueking A, Lehrach H (2000) Protein arrays for gene expression and molecular interaction screening. Current Opinion in Microbiology 3(3): 298–302PubMedCrossRefGoogle Scholar
  2. 2.
    Walter G, Büssow K, Lueking A, Glokler J (2002) High-throughput protein arrays: prospects for molecular diagnostics. Trends in Molecular Medicine 8(6): 250–253PubMedCrossRefGoogle Scholar
  3. 3.
    Lennon GG, Lehrach H (1991) Hybridization analyses of arrayed cDNA libraries. Trends Genet 7(10): 314–317PubMedCrossRefGoogle Scholar
  4. 4.
    Büssow K, Cahill D, Nietfeld W, Bancroft D, Scherzinger E, Lehrach H, Walter G (1998) A method for global protein expression and antibody screening on highdensity filters of an arrayed cDNA library. Nucleic Acids Res 26(21): 5007–5008PubMedCrossRefGoogle Scholar
  5. 5.
    de Wildt RM, Mundy CR, Gorick BD, Tomlinson IM (2000) Antibody arrays for high-throughput screening of antibody-antigen interactions. Nat Biotechnol 18(9): 989–994PubMedCrossRefGoogle Scholar
  6. 6.
    Petricoin EF, et al. (2002) Use of proteomic patterns in serum to identify ovarian cancer. Lancet 359(9306):572–577PubMedCrossRefGoogle Scholar
  7. 7.
    Jenkins RE, Pennington SR (2001) Arrays for protein expression profiling: towards a viable alternative to two-dimensional gel electrophoresis? Proteomics 1(1): 13–29PubMedCrossRefGoogle Scholar
  8. 8.
    Templin MF, Stoll D, Schrenk M, Traub PC, Vohringer CF, Joos TO (2002) Protein microarray technology. Trends Biotechnol 20(4): 160–166PubMedCrossRefGoogle Scholar
  9. 9.
    Zhu H, Snyder M (2001) Protein arrays and microarrays. Curr Opin Chem Biol 5(1): 40–45PubMedCrossRefGoogle Scholar
  10. 10.
    Schena M, Shalon D, Davis RW, Brown PO (1995) Quantitative monitoring of gene-expression patterns with a complementary-DNA microarray. Science 270(N5235): 467–470PubMedGoogle Scholar
  11. 11.
    MacBeath G, Schreiber SL (2000) Printing proteins as microarrays for high-throughput function determination. Science 289(5485): 1760–1763PubMedGoogle Scholar
  12. 12.
    BioChipNet []Google Scholar
  13. 13.
    Microarray Electronic Library []Google Scholar
  14. 14.
    Conrads TP, Issaq HJ, Veenstra TD (2002) New tools for quantitative phospho-proteome analysis. Biochem Biophys Res Comm 290(3): 885–890PubMedCrossRefGoogle Scholar
  15. 15.
    Ong SE, Blagoev B, Kratchmarova I, Kristensen DB, Steen H, Pandey A, Mann M (2002) Stable isotope labeling by amino acids in cell culture, SILAC, as a simple and accurate approach to expression proteomics. Mol Cell Proteomics 1(5): 376–386PubMedCrossRefGoogle Scholar
  16. 16.
    Glover JF, Wilson TM (1982) Effcient translation of the coat protein cistron of tobacco mosaic virus in a cell-free system from Escherichia coli. Eur J Biochem 122(3): 485–492PubMedCrossRefGoogle Scholar
  17. 17.
    Blanar MA, Rutter WJ (1992) Interaction cloning: identification of a helix-loop-helix zipper protein that interacts with c-Fos. Science 256(5059): 1014–1018PubMedGoogle Scholar
  18. 18.
    Aebersold R, Mann M (2003) Mass spectrometry-based proteomics. Nature 422(6928): 198–207PubMedCrossRefGoogle Scholar
  19. 19.
    Borrebaeck CA, Ekstrom S, Hager AC, Nilsson J, Laurell T, Marko-Varga G (2001) Protein chips based on recombinant antibody fragments: a highly sensitive approach as detected by mass spectrometry. Biotechniques 30(5): 1126–1130, 1132PubMedGoogle Scholar
  20. 20.
    Karlsson R, Kullman-Magnusson M, Hamalainen MD, Remaeus A, Andersson K, Borg P, Gyzander E, Deinum J (2000) Biosensor analysis of drug-target interactions: direct and competitive binding assays for investigation of interactions between thrombin and thrombin inhibitors. Anal Biochem 278(1): 1–13PubMedCrossRefGoogle Scholar
  21. 21.
    Myszka D, Rich R (2000) Implementing surface plasmon resonance biosensors in drug discovery. Pharm Sci Technol Today 3: 310–317PubMedCrossRefGoogle Scholar
  22. 22.
    Sali A, Glaeser R, Earnest T, Baumeister W (2003) From words to literature in structural proteomics. Nature 422(6928): 216–225PubMedCrossRefGoogle Scholar
  23. 23.
    Gavin AC, et al. (2002) Functional organization of the yeast proteome by systematic analysis of protein complexes. Nature 415(6868): 141–147PubMedCrossRefGoogle Scholar
  24. 24.
    Ho Y, et al. (2002) Systematic identification of protein complexes in Saccharomyces cerevisiae by mass spectrometry. Nature 415(6868): 180–183PubMedCrossRefGoogle Scholar
  25. 25.
    Tyers M, Mann M (2003) From genomics to proteomics. Nature 422(6928): 193–197PubMedCrossRefGoogle Scholar
  26. 26.
    Mitchell P (2002) A perspective on protein microarrays. Nat Biotechnol 20(3): 225–229PubMedCrossRefGoogle Scholar
  27. 27.
    Büssow K, Nordho E, Lüubbert C, Lehrach H, Walter G (2000) A human cDNA library for high-throughput protein expression screening. Genomics 65(1): 1–8PubMedCrossRefGoogle Scholar
  28. 28.
    Weiner H, Faupel T, Büssow K (2004) Protein arrays for cDNA expression libraries. In: Protein Arrays. Humana Press IncGoogle Scholar
  29. 29.
    Anderson L, Seilhamer J (1997) A comparison of selected mRNA and protein abundances in human liver. Electrophoresis 18(3–4): 533–537PubMedCrossRefGoogle Scholar
  30. 30.
    Ensembl Database []Google Scholar
  31. 31.
    Cahill DJ (2001) Protein and antibody arrays and their medical applications. J Immunol Methods 250(1–2): 81–91PubMedCrossRefGoogle Scholar
  32. 32.
    Burchell JM, Mungul A, Taylor-Papadimitriou J (2001) O-linked glycosylation in the mammary gland: changes that occur during malignancy. J Mammary Gland Biol Neoplasia 6(3): 355–364PubMedCrossRefGoogle Scholar
  33. 33.
    Safar JG, et al. (2002) Measuring prions causing bovine spongiform encephalopathy or chronic wasting disease by immunoassays and transgenic mice. Nat Biotechnol 20(11): 1147–1150PubMedCrossRefGoogle Scholar
  34. 34.
    Mendoza LG, McQuary P, Mongan A, Gangadharan R, Brignac S, Eggers M (1999) High-throughput microarray-based enzyme-linked immunosorbent assay (ELISA). Biotechniques 27(4): 778–780, 782–776, 788PubMedGoogle Scholar
  35. 35.
    Huang RP, Huang R, Fan Y, Lin Y (2001) Simultaneous detection of multiple cytokines from conditioned media and patient's sera by an antibody-based protein array system. Anal Biochem 294(1): 55–62PubMedCrossRefGoogle Scholar
  36. 36.
    Arenkov P, Kukhtin A, Gemmell A, Voloshchuk S, Chupeeva V, Mirzabekov A (2000) Protein microchips: use for immunoassay and enzymatic reactions. Anal Biochem 278(2): 123–131PubMedCrossRefGoogle Scholar
  37. 37.
    Haab BB, Dunham MJ, Brown PO (2001) Protein microarrays for highly parallel detection and quantitation of specific proteins and antibodies in complex solutions. Genome Biology 2(2): RESEARCH0004Google Scholar
  38. 38.
    Angenendt P, Glökler J (2003) submittedGoogle Scholar
  39. 39.
    Angenendt P, Glökler J, Murphy D, Lehrach H, Cahill DJ (2002) Toward optimized antibody microarrays: a comparison of current microarray support materials. Anal Biochem 309(2): 253–260PubMedCrossRefGoogle Scholar
  40. 40.
    Peluso P, et al. (2003) Optimizing antibody immobilization strategies for the construction of protein microarrays. Anal Biochem 312(2): 113–124PubMedCrossRefGoogle Scholar
  41. 41.
    Schweitzer B, Wiltshire S, Lambert J, O'Malley S, Kukanskis K, Zhu Z, Kingsmore SF, Lizardi PM, Ward DC (2000) Inaugural article: immunoassays with rolling circle DNA amplification: a versatile platform for ultrasensitive antigen detection. Proc Natl Acad Sci USA 97(18): 10113–10119PubMedCrossRefGoogle Scholar
  42. 42.
    Schweitzer B, Kingsmore SF (2002) Measuring proteins on microarrays. Curr Opin Biotechnol 13(1): 14–19PubMedCrossRefGoogle Scholar
  43. 43.
    Bernard A, Michel B, Delamarche E (2001) Micromosaic immunoassays. Anal Chem 73(1): 8–12PubMedCrossRefGoogle Scholar
  44. 44.
    Hallborn J, Carlsson R (2002) Automated screening procedure for high-throughput generation of antibody fragments. Biotechniques Suppl: 30–37PubMedGoogle Scholar
  45. 45.
    Hanes J, Schaffitzel C, Knappik A, Pluckthun A (2000) Picomolar affinity antibodies from a fully synthetic naive library selected and evolved by ribosome display. Nat Biotechnol 18(12): 1287–1292PubMedCrossRefGoogle Scholar
  46. 46.
    Smith D, Collins BD, Heil J, Koch TH (2003) Sensitivity and specificity of photoaptamer probes. Mol Cell Proteomics 2(1): 11–18PubMedCrossRefGoogle Scholar
  47. 47.
    Kramer K, Fiedler M, Skerra A, Hock B (2002) A generic strategy for subcloning antibody variable regions from the scFv phage display vector pCANTAB 5 E into pASK85 permits the economical production of F(ab) fragments and leads to improved recombinant immunoglobulin stability. Biosens Bioelectron 17(4): 305–313PubMedCrossRefGoogle Scholar
  48. 48.
    He M, Taussig M (2001) Single step generation of protein arrays from DNA by cell-free expression and in situ immobilisation (PISA method). Nucleic Acids Res 29(15): e73PubMedCrossRefGoogle Scholar
  49. 49.
    Petsko GA (1996) For medicinal purposes. Nature 384(6604 Suppl): 7–9PubMedGoogle Scholar
  50. 50.
    Abelson JN, ed (1996) Combinatorial Chemistry. Methods in Enzymology. Vol. 267, Academic Press: San DiegoGoogle Scholar
  51. 51.
    Cortese R, ed (1996) Combinatorial Libraries; Synthesis, Screening and Application Potential., Walter de Gruyter & Co: BerlinGoogle Scholar
  52. 52.
    Famulok M, Winnaker E-L, Wong C-H, eds (1999) Combinatorial Chemistry in Biology., Springer Verlag: BerlinGoogle Scholar
  53. 53.
    Merrifield B (1986) Solid phase synthesis. Science 232(4748): 341–347PubMedGoogle Scholar
  54. 54.
    Merrifield RB (1963) Solid phase peptide synthesis. I. The synthesis of a tetrapeptide. J Am Chem Soc 85: 2149–2154CrossRefGoogle Scholar
  55. 55.
    Merrifield RB (1965) Automated synthesis of peptides. Science 150(693): 178–185PubMedGoogle Scholar
  56. 56.
    Hogan JC, Jr. (1996) Directed combinatorial chemistry. Nature 384(6604 Suppl): 17–19PubMedGoogle Scholar
  57. 57.
    Houghten RA, Pinilla C, Blondelle SE, Appel JR, Dooley CT, Cuervo JH (1991) Generation and use of synthetic peptide combinatorial libraries for basic research and drug discovery. Nature 354(6348): 84–86PubMedCrossRefGoogle Scholar
  58. 58.
    Frank R, Döhring R (1988) Simultaneous multiple synthesis under controlled flow conditions on cellulose paper disks as segmental solid supports. Tetrahedron 44(19): 6031–6040CrossRefGoogle Scholar
  59. 59.
    Frank R, Heikens W, Heisterberg-Moutsis G, Blocker H (1983) A new general approach for the simultaneous chemical synthesis of large numbers of oligonucleotides: segmental solid supports. Nucleic Acids Res 11(13): 4365–4377PubMedGoogle Scholar
  60. 60.
    Lam KS, Salmon SE, Hersh EM, Hruby VJ, Kazmierski WM, Knapp RJ (1991) A new type of synthetic peptide library for identifying ligand-binding activity. Nature 354(6348): 82–84PubMedCrossRefGoogle Scholar
  61. 61.
    Furka A, Sebestyen F, Asgedom M, Dibo G (1991) General method for rapid synthesis of multicomponent peptide mixtures. Int J Pept Protein Res 37(6): 487–493PubMedCrossRefGoogle Scholar
  62. 62.
    Geysen HM, Meloen RH, Barteling SJ (1984) Use of peptide synthesis to probe viral antigens for epitopes to a resolution of a single amino acid. Proc Natl Acad Sci USA 81(13): 3998–4002PubMedGoogle Scholar
  63. 63.
    Maskos U, Southern EM (1992) Oligonucleotide hybridizations on glass supports: a novel linker for oligonucleotide synthesis and hybridization properties of oligonucleotides synthesised in situ. Nucleic Acids Res 20(7): 1679–1684PubMedGoogle Scholar
  64. 64.
    Fodor SP, Read JL, Pirrung MC, Stryer L, Lu AT, Solas D (1991) Light-directed, spatially addressable parallel chemical synthesis. Science 251(4995): 767–773PubMedGoogle Scholar
  65. 65.
    Frank R (1992) Spot synthesis: an easy techique for the positionally addressable parallel chemical synthesis on a membrane support. Tetrahedron 48: 9217–9232CrossRefGoogle Scholar
  66. 66.
    Frank R (2002) High-density synthetic Peptide microarrays: emerging tools for functional genomics and proteomics. Comb Chem High Throughput Screen 5(6): 429–440PubMedGoogle Scholar
  67. 67.
    Frank R (2002) The SPOT-synthesis technique. Synthetic peptide arrays on membrane supports-principles and applications. J Immunol Methods 267(1): 13–26PubMedCrossRefGoogle Scholar
  68. 68.
    Geysen HM, Rodda SJ, Mason TJ (1986) A priori delineation of a peptide which mimics a discontinuous antigenic determinant. Mol Immunol 23(7): 709–715PubMedCrossRefGoogle Scholar
  69. 69.
    Frank R (1995) Simultaneous and combinatorial chemical synthesis techniques for the generation and screening of molecular diversity. J Biotechnol 41(2–3): 259–272PubMedCrossRefGoogle Scholar
  70. 70.
    Cantley LC, Songyang Z (1994) Specificity in recognition of phosphopeptides by srchomology 2 domains. J Cell Sci 18: 121–126Google Scholar
  71. 71.
    Macias M, Hyvönen M, Baraldi E, Schultz J, Sudol M, Saraste M, Oschkinat M (1996) Structure of the WW domain of a kinase-associated protein complexed with a proline-rich peptide. Nature 382: 646–649PubMedCrossRefGoogle Scholar
  72. 72.
    Spink KE, Fridman SG, Weis WI (2001) Molecular mechanisms of beta-catenin recognition by adenomatous polyposis coli revealed by the structure of an APC-beta-catenin complex. EMBO J 20(22): 6203–6212CrossRefGoogle Scholar
  73. 73.
    Reineke U, Kramer A, Schneider-Mergener J (1999) Antigen sequence-and library-based mapping of linear and discontinuous protein-protein-interaction sites by spot synthesis. Comb Chem Biol 243: 23–36Google Scholar
  74. 74.
    Darji A, Niebuhr K, Hense M, Wehland J, Chakraborty T, Weiss S (1996) Neutralizing monoclonal antibodies against listeriolysin: mapping of epitopes involved in pore formation. Infect Immun 64(6): 2356–2358PubMedGoogle Scholar
  75. 75.
    Hohne WE, et al. (1993) Structural base of the interaction of a monoclonal antibody against p24 of HIV-1 with its peptide epitope. Mol Immunol 30(13): 1213–1221PubMedCrossRefGoogle Scholar
  76. 76.
    Martens W, Greiser-Wilke I, Harder TC, Dittmar K, Frank R, Orvell C, Moennig V, Liess B (1995) Spot synthesis of overlapping peptides on paper membrane supports enables the identification of linear monoclonal antibody binding determinants on morbillivirus phosphoproteins. Vet Microbiol 44(2–4): 289–298PubMedCrossRefGoogle Scholar
  77. 77.
    Niebuhr K, Ebel F, Frank R, Reinhard M, Domann E, Carl UD, Walter U, Gertler FB, Wehland J, Chakraborty T (1997) A novel proline-rich motif present in ActA of Listeria monocytogenes and cytoskeletal proteins is the ligand for the EVH1 domain, a protein module present in the Ena/VASP family. Embo J 16(17): 5433–5444PubMedCrossRefGoogle Scholar
  78. 78.
    Schmidt TGM, Koepke J, Frank R, Skerra A (1996) Molecular interaction between the Strep-tag affinity peptide and its cognate target, streptavidin. J Mol Biol 255(5): 753–766PubMedCrossRefGoogle Scholar
  79. 79.
    Schmidt TG, Koepke J, Frank R, Skerra A (1996) Molecular interaction between the Strep-tag affinity peptide and its cognate target, streptavidin. J Mol Biol 255(5): 753–766PubMedCrossRefGoogle Scholar
  80. 80.
    Voss S, Skerra A (1997) Mutagenesis of a flexible loop in streptavidin leads to higher affinity for the Strep-tag II peptide and improved performance in recombinant protein purification. Protein Eng 10(8): 975–982PubMedCrossRefGoogle Scholar
  81. 81.
    Kramer A, Volkmer-Engert R, Malin R, Reineke U, Schneider-Mergener J (1993) Simultaneous synthesis of peptide libraries on single resin and continuous cellulose membrane supports: examples for the identification of protein, metal and DNA binding peptide mixtures. Pept Res 6(6): 314–319PubMedGoogle Scholar
  82. 82.
    Malin R, Steinbrecher A, Semmler W, Noll B, Johannson B, Frömmel C, Schneider-Mergener J (1995) Identification of technetium-99m binding peptides using cellulose-bound combinatorial peptide libraries. J Am Chem Soc 117: 11821–11822CrossRefGoogle Scholar
  83. 83.
    Bosc C, Frank R, Denarier E, Ronjat M, Schweitzer A, Wehland J, Job D (2001) Identification of novel bifunctional calmodulin-binding and microtubule-stabilizing motifs in STOP proteins. J Biol Chem 276(33): 30904–30913PubMedCrossRefGoogle Scholar
  84. 84.
    Frank R, Schneider-Mergener J (2002) SPOT-synthesis — scope and applications. In: Kocj J, Mahler M (eds) Peptide arrays on membrane supports: a laboratory manual. Springer Verlag, HeidelbergGoogle Scholar
  85. 85.
    Frank R, Hoffmann S, Kieb M, Lahmann H, Tegge W, Behm C, Gausepohl H (1996) Combinatorial synthesis on membrane supports by the SPOT technique: imaging peptide sequence space. In: Jung G (ed) Combinatorial peptide and non-peptide libraries — a handbook. Verlag Chemie. pp 363–386Google Scholar
  86. 86.
    Frank R, Overwin H (1996) SPOT synthesis. Epitope analysis with arrays of synthetic peptides prepared on cellulose membranes. Methods Mol Biol 66: 149–169PubMedGoogle Scholar
  87. 87.
    Kramer A, Schneider-Mergener J (1998) Synthesis and screening of peptide libraries on continuous cellulose membrane supports. Methods Mol Biol 87: 25–39PubMedGoogle Scholar
  88. 88.
    Adler F, Türk G, Frank R, Zander N, Wu W, Volkmer-Engert R, Schneider-Mergener J, Gausepohl H (1999) A new array format for the automated parallel combinatorial synthesis by the SPOT-technique. In: Epton R (ed) Proc. International Symp. on ‘Innovation and Perspectives in Solid Phase Synthesis 2000'. Mayflower Worldwide, Kingswinford, York. pp 221Google Scholar
  89. 89.
    Pellois JP, Zhou X, Srivannavit O, Zhou T, Gulari E, Gao X (2002) Individually addressable parallel peptide synthesis on microchips. Nat Biotechnol 20(9): 922–926PubMedCrossRefGoogle Scholar
  90. 90.
    Singh-Gasson S, Green RD, Yue Y, Nelson C, Blattner F, Sussman MR, Cerrina F (1999) Maskless fabrication of light-directed oligonucleotide microarrays using a digital micromirror array. Nat Biotechnol 17(10): 974–978PubMedCrossRefGoogle Scholar
  91. 91.
    Gao X, LeProust E, Zhang H, Srivannavit O, Gulari E, Yu P, Nishiguchi C, Xiang Q, Zhou X (2001) A flexible light-directed DNA chip synthesis gated by deprotection using solution photogenerated acids. Nucleic Acids Res 29(22): 4744–4750PubMedCrossRefGoogle Scholar
  92. 92.
    Gao X, Yu P, LeProust E, Sonigo L, Pellois JP, Zhang H (1998) Oligonucleotide Synthesis Using Solution Photogenerated Acids. J Am Chem Soc 120(48): 12698–12699CrossRefGoogle Scholar
  93. 93.
    LeProust E, Pellois JP, Yu P, Zhang H, Gao X, Srivannavit O, Gulari E, Zhou X (2000) Digital Light-Directed Synthesis. A Microarray Platform That Permits Rapid Reaction Optimization on a Combinatorial Basis. J Comb Chem 2(4): 349–354PubMedCrossRefGoogle Scholar
  94. 94.
    Pellois JP, Wang W, Gao X (2000) Peptide Synthesis Based on t-Boc Chemistry and Solution Photogenerated Acids. J Comb Chem 2(4): 355–360PubMedCrossRefGoogle Scholar
  95. 95.
    Hughes TR, et al. (2001) Expression profiling using microarrays fabricated by an ink-jet oligonucleotide synthesizer. Nat Biotechnol 19(4): 342–347PubMedCrossRefGoogle Scholar
  96. 96.
    Bischo FR, Stadler V, Breitling F (2003) Hochkomplexe Peptidarrays — Techniken, Anwendungen und Perspektiven. BioSpektrum 8:654–657Google Scholar
  97. 97.
    Breitling F, Breitling F, Felgenhauer T, Fernandez S, Leibe K, Beyer M, Stadler V, Bischo FR, Poustka A (2003) Hochkomplexe Peptidarrays auf Computer-chips.: in pressGoogle Scholar
  98. 98.
    Hultschig C, Two Dimensional Screening: Towards Establishing a Novel Technique to Study Biomolecular Interactions, in Gemeinsame naturwissenschaftliche Faklutät. 2000, Technische Universität Carolo-Wilhelmina zu Braunschweig; Germany; available under: Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Hendrik Weiner
  • Jörn Glökler
  • Claus Hultschig
  • Konrad Büssow
  • Gerald Walter

There are no affiliations available

Personalised recommendations