Experimental Models of Heart Failure

  • Volkmar Falk
  • Jens Garbade
  • Thomas Walther


Heart Failure Chronic Heart Failure Mitral Regurgitation Overt Heart Failure Experimental Autoimmune Myocarditis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adachi Y, Saito Y, Kishimoto I, Harada M, Kuwahara K, Takahashi N, Kawakami R, Nakanishi M, Nakagawa Y, Tanimoto K, Saitoh Y, Yasuno S, Usami S, Iwai M, Horiuchi M, Nakao K (2003) Angiotensin II Type 2 receptor deficiency exacerbates heart failure and reduces survival after acute myocardial infarction in mice. Circulation 107: 2406–2408CrossRefPubMedGoogle Scholar
  2. Arad M, Moskowitz IP, Patel VV, Ahmad F, Perez-Atayde AR, Sawyer DB, Walter M, Li GH, Burgon PG, Maguire CT, Stapleton D, Schmitt JP, Guo XX, Pizard A, Kupershmidt S, Roden DM, Berul CI, Seidman CE, Seidman JG (2003) Transgenic mice overexpressing mutant PRKAG2 define the cause of Wolff-Parkinson-White syndrome in glycogen storage cardiomyopathy. Circulation 107: 2850–2856CrossRefPubMedGoogle Scholar
  3. Arai M, Yoguchi A, Takizawa T, Yokoyama T, Kanda T, Kurabayashi M, Nagai R (2000) Mechanism of doxorubicin-induced inhibition of sarcoplasmic reticulum Ca2+-ATPase gene transcription. Circ Res 86: 8–14PubMedGoogle Scholar
  4. Arnolda L, McGrath B, Cocks M, Sumithran E, Johnston C (1985) Adriamycin cardiomyopathy in the rabbit: an animal model of low output cardiac failure with activation of vasoconstrictor mechanisms. Cardiovasc Res 19: 378–382PubMedGoogle Scholar
  5. Asayama J, Yamahara Y, Matsumoto T, Miyazaki H, Tatsumi T, Inoue M, Ohta B, Omori I, Inoue D, Nakagawa M (1992) Acute and subacute effects of doxorubicin on postextrasystolic potentiation in guinea pig papillary muscles. Pharmacol Toxicol 71: 371–375PubMedGoogle Scholar
  6. Boucek RJ, Dodd DA, Atkinson JB, Oquist N, Olson RD (1997) Contractile failure in chronic doxorubicin-induced cardiomyopathy. J Mol Cell Cardiol 29: 2631–2640PubMedGoogle Scholar
  7. Bing OH, Conrad CH, Boluyt MO, Robinson KG, Brooks WW (2002) Studies of prevention, treatment and mechanisms of heart failure in the aging spontaneously hypertensive rat. Heart Fail Rev 7: 71–88PubMedGoogle Scholar
  8. Bolotin G, Lorusso R, Kaulbach H, Schreuder J, Uretzky G, Van der Veen FH (1999) Acute and chronic heart dilation model-induced in goats by carotid jugular A-V shunt. Basic Appl Myol 9: 219–222Google Scholar
  9. Bristow MR (1982) Toxic cardiomyopathy due to doxorubicin. Hosp Pract (Off Ed) 17: 101–108, 110–111Google Scholar
  10. Byrne MJ, Raman JS, Alferness CA, Esler MD, Kaye DM, Power JM (2002) An ovine model of tachycardia-induced degenerative dilated cardiomyopathy and heart failure with prolonged onset. J Card Fail 8: 108–15PubMedGoogle Scholar
  11. Chekanov VS (1999) A stable model of chronic bilateral ventricular insufficiency (dilated cardiomyopathy) induced by arteriovenous anastomosis and doxorubicin administration in sheep. J Thorac Cardiovasc Surg 117: 198–199PubMedGoogle Scholar
  12. Christiansen S, Stypmann JJ, Jahn UR, Redmann K, Fobker M, Gruber AD, Scheld HH, Hammel D (2003) Partial left ventriculectomy in modified adriamycin-induced cardiomyopathy in the dog. J Heart Lung Transplant 22: 301–308PubMedGoogle Scholar
  13. Falk V, Fann JI, Grünenfelder J, Daunt D, Burdon TA (2000) Total endoscopic computer enhanced beating heart coronary artery bypass grafting. Ann Thorac Surg 70: 2029–2033CrossRefPubMedGoogle Scholar
  14. Flaim SF, Minteer WF, Nellis SH, Clark DP (1979) Chronic arteriovenous shunt: evaluation of a model for heart failure in rat. Am J Physiol 236: H698–H704PubMedGoogle Scholar
  15. Garcia R, Diebold S (1990) Simple, rapid, and effective method of producing aortocaval shunts in the rat. Cardiovasc Res 24: 430–432PubMedGoogle Scholar
  16. Gengo PJ, Sabbah HN, Steffen RP, Sharpe JK, Kono T, Stein PD, Goldstein S (1992) Myocardial beta adrenoceptor and voltage sensitive calcium channel changes in a canine model of chronic heart failure. J Mol Cell Cardiol 11:1361–1369Google Scholar
  17. Gross RD (1994) Animal models in cardiovascular research, 2nd edn. Kluwer Academic Publisher, New YorkGoogle Scholar
  18. Hasnat AK, van der Velde ET, Hon JKF, Yacoub MH (2003) Reproducible model of post-infarction left ventricular dysfunction: haemodynamic characterization by conductance catheter Eur J Cardiothorac Surg 24: 98–104CrossRefPubMedGoogle Scholar
  19. Hongo M, Ryoke T, Ross J (1997) Animal models of heart failure: Recent developments and perspectives. Trends Cardiovasc Med 7: 161–167CrossRefGoogle Scholar
  20. Jiang L, Huang Y, Hunyor S, dos Remedios CG (2003) Cardiomyocyte apoptosis is associated with increased wall stress in chronic failing left ventricle. Eur Heart J 24: 742–751CrossRefPubMedGoogle Scholar
  21. Jones SP, Greer JJ, van Haperen R, Duncker DJ, de Crom R, Lefer DJ (2003) Endothelial nitric oxide synthase overexpression attenuates congestive heart failure in mice. Proc Natl Acad Sci 100: 4891–4896PubMedGoogle Scholar
  22. Kaczmarek I, Feindt P, Boeken U, Guerler S, Gams E (2003) Effects of direct mechanical ventricular assistance on regional myocardial function in an animal model of acute heart failure. Artif Organs 27: 261–266CrossRefPubMedGoogle Scholar
  23. Kaulbach HG, Lorusso R, Bolotin G, Schreuder JJ, van der Veen FH (2002) Effects of chronic cardiomyoplasty on ventricular remodeling in a goat model of chronic cardiac dilatation: part 2. Ann Thorac Surg 74: 514–521CrossRefPubMedGoogle Scholar
  24. Kelso EJ, Geraghty RF, McDermott BJ, Cameron CH, Nicholls DP, Silke B (1997) Characterisation of a cellular model of cardiomyopathy, in the rabbit, produced by chronic administration of the anthracycline, epirubicin. J Mol Cell Cardiol. 29: 3385–3397CrossRefPubMedGoogle Scholar
  25. Kim CS, Davidoff AJ, Maki TM, Doye AA, Gwathmey JM (2000) Intracellular calcium and the relationship to contractility in an avian model of heart failure. J Comp Physiol B 170: 295–306CrossRefPubMedGoogle Scholar
  26. Kleaveland JP, Kussmaul WG, Vinciguerra T, Diters R, Carabello BA (1988) Volume overload hypertrophy in a closed-chest model of mitral regurgitation. Am J Physiol 254: H1034–1041PubMedGoogle Scholar
  27. Koyama S, Kodama M, Izumi T, Shibata A (1995) Experimental rat model representing both acute and chronic heart failure related to autoimmune myocarditis. Cardiovasc Drugs Ther 9: 701–707CrossRefPubMedGoogle Scholar
  28. Kunzelman KS, Linker DT, Sai S, Miyake-Hull C, Quick D, Thomas R, Rothnie C, Cochran RP (1999) Acute mitral valve regurgitation created in sheep using echocardiographic guidance. Heart Valve Dis 8: 637–643Google Scholar
  29. Langenickel T, Pagel I, Höhnel K, Dietz R, Willenbrock R (2000) Differential regulation of cardiac ANP and BNP mRNA in different stages of experimental heart failure Am J Physiol 278: H1500–H1506Google Scholar
  30. Llaneras MR, Nance ML, Streicher JT, Lima JA, Savino JS, Bogen DK, Deac RF, Ratcliffe MB, Edmunds LH Jr (1994) Large animal model of ischemic mitral regurgitation. Ann Thorac Surg. 57: 432–439PubMedGoogle Scholar
  31. Li GR, Lau CP, Ducharme A, Tardif JC, Nattel S (2002) Transmural action potential and ionic current remodeling in ventricles of failing canine hearts. Am J Physiol 283: H1031–1041Google Scholar
  32. Liu Z, Hilbelink DR, Crockett WB, Gerdes AM (1991a) Regional changes in hemodynamics and cardiac myocyte size in rats with aortocaval fistulas 1. Developing and established hypertrophy. Circ Res 69: 52–58PubMedGoogle Scholar
  33. Liu Z, Hilbelink DR, Gerdes AM (1991b) Regional changes in hemodynamics and cardiac myocyte size in rats with aortocaval fistulas. 2. Long-term effects. Circ Res 69: 59–65PubMedGoogle Scholar
  34. Mishima T, Tanimura M, Suzuki G, Todor A, Sharov VG, Goldstein S, Sabbah HN (2000) Effects of long-term therapy with bosentan on the progression of left ventricular dysfunction and remodeling in dogs with heart failure. J Am Coll Cardiol 35: 222–229CrossRefPubMedGoogle Scholar
  35. Monnet E, Orton EC (1999) A canine model of heart failure by intracoronary adriamycin injection: hemodynamic and energetic results J Card Fail. 5: 255–264PubMedGoogle Scholar
  36. Morita H, Suzuki G, Mishima T, Chaudhry PA, Anagnostopoulos PV, Tanhehco EJ, Sharov VG, Goldstein S, Sabbah HN (2002) Effects of long-term monotherapy with metoprolol CR/XL on the progression of left ventricular dysfunction and remodeling in dogs with chronic heart failure. Cardiovasc Drugs Ther 16: 443–449CrossRefPubMedGoogle Scholar
  37. Morri I, Kihara Y, Inoko M, Sasayama S (1998) Myocardial contractile efficiency and oxygen cost of contractility are preserved during transition from compensated hypertrophy to failure in rats with salt sensitive hypertension. Hypertension 31: 949–960Google Scholar
  38. Muders F, Friedrich E, Luchner A, Pfeifer M, Ickenstein G, Hamelbeck B, Riegger GA, Elsner D (1999) Hemodynamic changes and neurohumoral regulation during development of congestive heart failure in a model of epinephrine-induced cardiomyopathy in conscious rabbits. J Card Fail 5: 109–116PubMedGoogle Scholar
  39. Nikolaidis LA, Hentosz T, Doverspike A, Huerbin R, Stolarski C, Shen YT, Shannon RP (2002) Catecholamine stimulation is associated with impaired myocardial O(2) utilization in heart failure. Cardiovasc Res 53: 392–404CrossRefPubMedGoogle Scholar
  40. Nishio R, Sasayama S, Matsumori A (2002) Left entricular pressure-volume relationship in a murine model of congestive heart failure due to acute viral myocarditis. J Am Coll Cardiol 40: 1506–1514CrossRefPubMedGoogle Scholar
  41. Noguchi T, Kihara Y, Begin KJ, Gorga JA, Palmiter KA, LeWinter MM, VanBuren P (2003) Altered myocardial thin-filament function in the failing Dahl salt-sensitive rat heart Amelioration by endothelin blockade. Circulation 107: 630–635CrossRefPubMedGoogle Scholar
  42. Okafor CC, Saunders L, Li X, Ito T, Dixon M, Stepenek A, Hajjar RJ, Wood JR, Doye AA, Gwathmey JK (2003) Myofibrillar responsiveness to cAMP, PKA, and caffeine in an animal model of heart failure. Biochem Biophys Res Commun 300: 592–599CrossRefPubMedGoogle Scholar
  43. Olson RD, Mushlin PS (1990) Doxorubicin cardiotoxicity: analysis of prevailing hypotheses [see comments]. FASEB J 4: 3076–3086PubMedGoogle Scholar
  44. Olson RD, Mushlin PS, Brenner DE, Fleischer S, Cusack BJ, Chang BK, Boucek RJ Jr (1988) Doxorubicin cardiotoxicity may be caused by its metabolite, doxorubicinol. Proc Natl Acad Sci USA 85: 3585–3589PubMedGoogle Scholar
  45. Pacher P, Liaudet L, Bai P, Mabley JG, Kaminski PM, Virag L, Deb A, Szabo E, Ungvari Z, Wolin MS, Groves JT, Szabo C (2003) Potent metalloporphyrin peroxynitrite decomposition catalyst protects against the development of doxorubicin-induced cardiac dysfunction. Circulation 107: 896–904CrossRefPubMedGoogle Scholar
  46. Perry GJ, Wei CC, Hankes GH, Dillon SR, Rynders P, Mukherjee R, Spinale FG, Dell’Italia LJ (2002) Angiotensin II receptor blockade does not improve left ventricular function and remodeling in subacute mitral regurgitation in the dog. J Am Coll Cardiol 39: 1374–1379CrossRefPubMedGoogle Scholar
  47. Porter CB, Walsh RA, Badke FR, O’Rourke RA (1983) Differential effects of diltiazem and nitroprusside on left ventricular function in experimental chronic volume overload. Circulation 68: 685–692PubMedGoogle Scholar
  48. Raman JS, Byrne MJ, Power JM, Alferness CA (2003) Ventricular constraint in severe heart failure halts decline in cardiovascular function associated with experimental dilated cardiomyopathy. Ann Thorac Surg 76: 141–147CrossRefPubMedGoogle Scholar
  49. Reed WM, VanVleet JF, Wigle WL, Fulton RM (1987) Furazolidone-associated cardiomyopathy in two Indiana flocks of ducklings. Avian Diseases 31: 666–672PubMedGoogle Scholar
  50. Rhodon W (1993) Anthracyclines and the heart. Br Heart J 70: 499–502, ReviewGoogle Scholar
  51. Ross J, Ikeda Y (2002) Models of dilated cardiomyopathy in the mouse and hamster. Curr Opin Cardiol 15: 197–201Google Scholar
  52. Saavedra WF, Tunin RS, Paolocci N, Mishima T, Suzuki G, Emala CW, Chaudhry PA, Anagnostopoulos P, Gupta RC, Sabbah HN, Kass DA (2002) Reverse remodeling and enhanced adrenergic reserve from passive external support in experimental dilated heart failure. J Am Coll Cardiol 39: 2069–2076CrossRefPubMedGoogle Scholar
  53. Sabbah HN, Stein PD, Kono T, Gheorghiade M, Levine TB, Jafri S, Hawkins ET, Goldstein S (1991) A canine model of chronic heart failure produced by multiple sequential coronary microembolizations. Am J Physiol 260: H1379–1384PubMedGoogle Scholar
  54. Sabbah HN, Kono T, Stein PD, Mancini GB, Goldstein S (1992) Left ventricular shape changes during the course of evolving heart failure. Am J Physiol 263: H266–270PubMedGoogle Scholar
  55. Sabbah HN, Stanley WC, Sharov VG, Mishima T, Tanimura M, Benedict CR, Hegde S, Goldstein S (2000) Effects of dopamine beta-hydroxylase inhibition with nepicastat on the progression of left ventricular dysfunction and remodeling in dogs with chronic heart failure. Circulation 102: 1990–1995PubMedGoogle Scholar
  56. Sacco G, Giampietro R, Salvatorelli E, Menna P, Bertani N, Graiani G, Animati F, Goso C, Maggi CA, Manzini S, Minotti G (2003) Chronic cardiotoxicity of anticancer anthracyclines in the rat: role of secondary metabolites and reduced toxicity by a novel anthracycline with impaired metabolite formation and reactivity. Br J Pharmacol 139: 641–651CrossRefPubMedGoogle Scholar
  57. Schwarz ER, Pollick C, Meehan WP, Kloner RA (1998) Evaluation of cardiac structures and function in small experimental animals: transthoracic, transesophageal, and intraventricular echocardiography to assess contractile function in rat heart. Basic Res Cardiol 93: 477–486CrossRefPubMedGoogle Scholar
  58. Sedlarik K, Eger H, Wilde J, Vollmar F, Reimann G, Schilling B, Seelig G, Fiehring H (1976) Experimental model of coronary thrombosis in the closed thorax in swine. Z Exp Chir 9: 302–315PubMedGoogle Scholar
  59. Singal PK (1985) Adriamycin does have a potentially depressant effect on left ventricular contractility. Int J Cardiol 7: 447–449CrossRefPubMedGoogle Scholar
  60. Singal PK, Pierce GN (1986) Adriamycin stimulates low-affinity Ca2+ binding and lipid peroxidation but depresses myocardial function. Am J Physiol 250: H419–H425PubMedGoogle Scholar
  61. Spinale FG, de Gasparo M, Whitebread S, Hebbar L, Clair MJ, Melton DM, Krombach RS, Mukherjee R, Iannini JP, O SJ (1997) Modulation of the renin-angiotensin pathway through enzyme inhibition and specific receptor blockade in pacing-induced heart failure: I. Effects on left ventricular performance and neurohormonal systems. Circulation 96: 2385–2396PubMedGoogle Scholar
  62. Spinale FG, Ishihra K, Zile M, DeFryte G, Crawford FA, Carabello BA (1993) Structural basis for changes in left ventricular function and geometry because of chronic mitral regurgitation and after correction of volume overload. J Thorac Cardiovasc Surg 106: 1147–1157PubMedGoogle Scholar
  63. Spindler M, Engelhardt S, Niebler R, Wagner H, Hein L, Lohse MJ, Neubauer S (2003) Alterations in the myocardial creatine kinase system precede the development of contractile dysfunction in beta(1)-αdrenergic receptor transgenic mice. J Mol Cell Cardiol 35: 389–397CrossRefPubMedGoogle Scholar
  64. St Louis JD, Hughes GC, Kypson AP, DeGrado TR, Donovan CL, Coleman RE, Yin B, Steenbergen C, Landolfo KP, Lowe JE (2000) An experimental model of chronic myocardial hibernation. Ann Thorac Surg 69: 1351–1357PubMedGoogle Scholar
  65. Suzuki K, Murtuza B, Suzuki N, Smolenski RT, Yacoub MH (2001) Intracoronary infusion of skeletal myoblasts improves cardiac function in doxorubicin-induced heart failure. Circulation 104: I213–217PubMedGoogle Scholar
  66. Tachikawa H, Kodama M, Hui L, Yoshida T, Hayashi M, Abe S, Kashimura T, Kato K, Hanawa H, Watanabe K, Nakazawa M, Aizawa Y (2003) Angiotensin II type 1 receptor blocker, valsartan, prevented cardiac fibrosis in rat cardiomyopathy after autoimmune myocarditis. J Cardiovasc Pharmacol 41[Suppl 1]: S105–110PubMedGoogle Scholar
  67. Takagaki M, McCarthy PM, Tabata T, Dessoffy R, Cardon LA, Connor J, Ochiai Y, Thomas JD, Francis GS, Young JB, Fukamachi K (2002) Induction and maintenance of an experimental model of severe cardiomyopathy with a novel protocol of rapid ventricular pacing. J Thorac Cardiovasc Surg 123: 544–549CrossRefPubMedGoogle Scholar
  68. Teerlink JR, Ratcliffe MB (2002) Ventricular remodeling surgery for heart failure: small animal models and how to measure an improvement in ventricular function. Ann Thorac Surg 73: 1368–1370CrossRefPubMedGoogle Scholar
  69. Tevaearai HT, Walton GB, Eckhart AD, Keys JR, Koch WJ (2002) Heterotopic transplantation as a model to study functional recovery of unloaded failing hearts. J Thorac Cardiovasc Surg 124: 1149–1156CrossRefPubMedGoogle Scholar
  70. To H, Ohdo S, Shin M, Uchimaru H, Yukawa E, Higuchi S, Fujimura A, Kobayashi E (2003) Dosing time dependency of doxorubicin-induced cardiotoxicity and bone marrow toxicity in rats. Pharm Pharmacol 55: 803–810Google Scholar
  71. Toyoda Y, Okada M, Kashem MA (1998) A canine model of dilated cardiomyopathy induced by repetitive intracoronary doxorubicin administration. J Thorac Cardiovasc Surg 115: 1367–1374PubMedGoogle Scholar
  72. Tsutsui H, Spinale FG, Nagatsu M, Schmid PG, Ishihara K, DeFreyte G, Cooper G 4th, Carabello BA (1994) Effects of chronic beta-adrenergic blockade on the left ventricular and cardiocyte abnormalities of chronic canine mitral regurgitation. J Clin Invest 93: 2639–2648PubMedGoogle Scholar
  73. Uno Y, Minatoguchi S, Imai Y, Koshiji M, Kakami M, Yokoyama H, Ito H, Hirakawa S (1993) Modulation of noradrenaline release via activation of presynaptic beta-adrenoceptors in rabbits with adriamycin-induced cardiomyopathy. Jpn Circ J 57: 426–433PubMedGoogle Scholar
  74. Wang X, Ren B, Liu S, Sentex E, Tappia PS, Dhalla NS (2003) Characterization of cardiac hypertrophy and heart failure due to volume overload in the rat. J Appl Physiol 94: 752–763PubMedGoogle Scholar
  75. Ward ML, Pope AJ, Loiselle DS, Cannell MB (2003) Reduced contraction strength with increased intracellular [Ca2+] in left ventricular trabeculae from failing rat hearts. J Physiol 546(Pt 2): 537–550CrossRefPubMedGoogle Scholar
  76. White FC, Roth DM, Bloor CM (1986) The pig as a model for myocardial ischemia and exercise. Lab Anim Sci 36: 351–356PubMedGoogle Scholar
  77. Wilson EM, Moainie SL, Baskin JM et al. (2003) Region-and type-specific induction of matrix metalloproteinases in post-myocardial infarction Remodeling Circulation 107: 2857–2863Google Scholar
  78. Yarbrough WM, Spinale FG (2003) Large animal models of congestive heart failure: A critical step in translating basic observations into clinical applications. J Nucl Cardiol 10: 77–86CrossRefPubMedGoogle Scholar
  79. Yoshikawa T, Kokura S, Oyamada H, Iinuma S, Nishimura S, Kaneko T, Naito Y, Kondo M (1994) Abnormalities in sympathoneuronal regulation are localized to failing myocardium in rabbit heart. J Am Coll Cardiol 24: 210–215PubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Volkmar Falk
    • 1
  • Jens Garbade
    • 1
  • Thomas Walther
    • 1
  1. 1.Herzzentrum, Klinik für HerzchirurgieUniversität LeipzigLeipzigGermany

Personalised recommendations