How to Solve a Protein Structure by Nuclear Magnetic Resonance — The Connexin43 Carboxyl Terminal Domain

  • Paul L. Sorgen


Static Magnetic Field Molecular Biology Technique Nuclear Overhauser Effect Distance Restraint Carboxyl Terminal Domain 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Braun, W., Go, N. (1985) Calculation of protein conformations by proton-proton dustance constraints. A new efficient algorithm. J Mol Biol 186, 611–626CrossRefPubMedGoogle Scholar
  2. Brunger, A. T., Adams, P. D., Clore, G. M. et al. (1998) Crystallography & NMR system: A new software suite for macromolecular structure determination. Acta Crystallogr D Biol Crystallogr 54(Pt 5), 905–921PubMedGoogle Scholar
  3. Cavanagh, J., Fairbrother, W. J., Palmer III, A. G., and Skelton, N. J. (1996) Protein NMR Spectroscopy, Academic Press, San DiegoGoogle Scholar
  4. Delaglio, F., Grzesiek, S., Vuister, G. W., Zhu, G., Pfeifer, J., and Bax, A. (1995) NMR-Pipe: a multidimensional spectral processing system based an UNIX pipes. J Biomol NMR 6, 277–293CrossRefPubMedGoogle Scholar
  5. Duffy, H. S., Sorgen, P. L., Girvin, M. E., O’Donnell, P., Coombs, W., Taffet, S. M., Delmar, M., and Spray, D. C. (2002) pH-dependent intramolecular binding and structure involving Cx43 cytoplasmic domains. J Biol Chem 277, 36706–36714CrossRefPubMedGoogle Scholar
  6. Engelke, J., and Ruterjans, H. (1995) Sequential protein backbone assignments using an improved 3D-HN(CA)CO pulse scheme. J. Magn. Reson. Ser. B 109, 318–322Google Scholar
  7. Freeman, R. (1998) Spin Choreography. Oxford University Press, New YorkGoogle Scholar
  8. Grzesiek, S., and Bax, A. (1993) Amino acid type determination in the sequential assignment procedure of uniform 13C/15N-enriched proteins. J. Biomol. NMR 3, 185–204PubMedGoogle Scholar
  9. Havel, T. F., Kuntz, I. D., and Crippen, G. M. (1983a) The combinatorial distance geometry method for the calculation of molecular conformation. II. Sample problems and computational statistics. J Theor Biol 104, 359–381PubMedGoogle Scholar
  10. Johnson, B. A. a. B., R. A. (1994) NMR-View: A Computer program for the visualization and analysis of NMR data. J. Biomol. NMR 4, 603–614CrossRefGoogle Scholar
  11. Kay, L. E., Ikura, M., Tschudin, R., and Bax, A. (1992) Three-Dimensional Triple-Resonance Spectroscopy of Isotopically Enriched Proteins. J. Magn. Reson. 89, 496–514Google Scholar
  12. Kay, L. E., Xu, G. Y., Singer, A. U., Muhandiram, R., and Forman-Kay, J. D. (1993) A Gradient-Enhanced HCCH-TOCSY Experiment for Recording Side-Chair and 13C Correlations in H2O Samples of Proteins. J. Magn. Reson. Ser. B 101, 333–337Google Scholar
  13. Koradi, R., Billeter, M., and Wuthrich, K. (1996) MOLMOL: a program for display and analysis of macromolecular structures. J Mol Graph 14, 51–55, 29–32PubMedGoogle Scholar
  14. Krueger-Koplin, R. D., Sorgen, P. L., Krueger-Koplin, S. T. et al. (2003) An evaluation of detergents for NMR structural studies of membrane proteins. J. Biomol. NMR.Google Scholar
  15. Laskowski, R. A., Rullmannn, J. A., MacArthur, M. W., Kaptein, R., and Thornton, J. M. (1996) AQW and PROCHECK-NMR: programs for checking the quality of protein structures solved by NMR. J Biomol NMR 8, 477–486CrossRefPubMedGoogle Scholar
  16. Levitt, M. (2001) Spin Dynamics, John Wiley & Sons, LTD, ChichesterGoogle Scholar
  17. Evans, J. (1995) Biomolecular NMR Spectroscopy, Oxford University Press, New York Markley, J. L., Bax, A., Arata, Y., Hilbers, C. W., Kaptein, R., Sykes, B. D., Wright, P. E., and Wuthrich, K. (1998) J Mol Biol 280, 933–952Google Scholar
  18. Muhandiram, R., and Kay, L. E. (1994) Gradient-enhanced triple-resonance NMR experiments with improved sensitivity. J. Magn. Reson. Ser. B 109, 203–2216Google Scholar
  19. Power, R., Gronenborn, A. M., Clore, G. M., and Bax, A. (1991) Secondary structure of the ribonuclease H domain of the human immunodeficiency virus reverse transcriptase in solution using three-dimensional double and triple resonance heteronuclear magnetic resonance spectroscopy. J. Magn. Reson. 94, 209–213Google Scholar
  20. Sorgen, P. L., Cahill, S. M., Krueger-Koplin, R. D., Krueger-Koplin, S. T., Schenck, C. C., and Girvin, M. E. (2002a) Structure of the Rhodobacter sphaeroides light-harvesting 1 beta subunit in detergent micelles. Biochemistry 41, 31–41CrossRefPubMedGoogle Scholar
  21. Sorgen, P. L., Duffy, H. S., Cahill, S. M., Coombs, W., Spray, D. C., Delmar, M., and Girvin, M. E. (2002b) Sequence-specific resonance assignment of the carboxyl terminal domain of Connexin43. J Biomol NMR 23, 245–246CrossRefPubMedGoogle Scholar
  22. Stein, E. G., Rice, L. M., and Brunger, A. T. (1997) Torsion-angle molecular dynamics as a new efficient tool for NMR structure calculation. J Magn Reson 124, 154–164CrossRefPubMedGoogle Scholar
  23. Vriend, G. (1990) WHAT IF: a molecular modeling and drug design program. J. Mol. Graph. 8, 52–56PubMedGoogle Scholar
  24. Vuister, G. W., and Bax, A. (1993) Quantitative J Correlation: A New Approach for Measuring Homonuclear Three-Bond J(HNHa) Coupling Constants in 15N-Enriched Proteins. J. Magn. Reson. 96, 432–440Google Scholar
  25. Wittekind, M., and Mueller, L. (1993) J. Magn. Reson. Ser. B 101, 201–205ang, O., Kay, L. E., Olivier, J. P., and Forman-Kay, J. D. (1994) HNCACB, a high-sensitivity 3D NMR experiment to correlate amide-proton and nitrogen resonances with the alpha-and Beta-carbon resonances in proteins. J Biomol NMR 4, 845–858Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Paul L. Sorgen
    • 1
  1. 1.Department of Biochemistry and Molecular BiologyUniversity of Nebraska Medical CenterOmahaUSA

Personalised recommendations