Receptor and Binding Studies

  • Peter Hein
  • Martin C. Michel
  • Kirsten Leineweber
  • Thomas Wieland
  • Nina Wettschureck
  • Stefan Offermanns


Enhance Green Fluorescent Protein Binding Study Radioligand Binding Enhance Green Fluorescent Protein Expression Saturation Binding Experiment 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Christensen G, Wang Y, Chien KR (1997) Physiological assessment of complex cardiac phenotypes in genetically engineered mice. Am J Physiol 272:H2513–H2524PubMedGoogle Scholar
  2. Conway SJ, Kruzynska-Frejtag A, Kneer PL, Machnicki M, Koushik SV (2003) What cardiovascular defect does my prenatal mouse mutant have, and why? Genesis 35:1–21CrossRefPubMedGoogle Scholar
  3. Copp AJ (1995) Death before birth: clues from gene knockouts and mutations. Trends Genet 11:87–93PubMedGoogle Scholar
  4. El-Armouche A, Rau T, Zolk O, Ditz D, Pamminger T, Zimmermann WH, Jäckel E, Harding SE, Boknik P, Neumann J, Eschenhagen T (2003) Evidence for protein phosphatase inhibitor-1 playing an amplifier role in β-adrenergic signaling in cardiac myocytes. FASEB J 17:437–439PubMedGoogle Scholar
  5. Fahimi-Vahid M, Gosau N, Michalek C, Han L, Jakobs KH, Schmidt M, Roberts N, Avkiran M, Wieland T (2002) Distinct signaling pathways mediate cardiomyocyte phospholipase D stimulation by endothelin-1 and thrombin. J Mol Cell Cardiol 34:441–453CrossRefPubMedGoogle Scholar
  6. Feil R, Brocard J, Mascrez B, LeMeur M, Metzger D, Chambon P (1996) Ligand-activated site-specific recombination in mice. Proc Natl Acad Sci USA 93:10887–10890CrossRefPubMedGoogle Scholar
  7. Fitzgerald SM, Gan L, Wickman A, Bergstrom G (2003) Cardiovascular and renal phenotyping of genetically modified mice: a challenge for traditional physiology. Clin Exp Pharmacol Physiol 30:207–216CrossRefPubMedGoogle Scholar
  8. Giraldo P, Montoliu L (2001) Size matters: use of YACs, BACs and PACs in transgenic animals. Transgenic Res 10: 83–103CrossRefPubMedGoogle Scholar
  9. Gosau N, Fahimi-Vahid M, Michalek C, Schmidt M, Wieland T (2002) Signalling components involved in the coupling of α1-adrenoceptors to phospholipase D in neonatal rat cardiac myocytes. Naunyn-Schmiedeberg’s Arch Pharmacol 365:468–476Google Scholar
  10. Gossen M, Freundlieb S, Bender G, Muller G, Hillen W, Bujard H (1995) Transcriptional activation by tetracyclines in mammalian cells. Science 268:1766–1769PubMedGoogle Scholar
  11. He TC, Zhou S, Da Costa LT, Yu J, Kinzler KW, Vogelstein B (1998) A simplified system for generating recombinant adenoviruses. Proc Natl Acad Sci USA 95:2509–2514PubMedGoogle Scholar
  12. Heintz N (2001) BAC to the future: the use of bac transgenic mice for neuroscience research. Nat Rev Neurosci 2: 861–870CrossRefPubMedGoogle Scholar
  13. Hilal-Dandan R, Kanter JR, Brunton LL (2000) Characterization of G-protein signaling in ventricular myocytes from the adult mouse heart: differences from the rat. J Mol Cell Cardiol 32:1211–1221CrossRefPubMedGoogle Scholar
  14. Janssen PM, Schillinger W, Donahue JK, Zeitz O, Emami S, Lehnart SE, Weil J, Eschenhagen T, Hasenfuss G, Prestle J (2002) Intracellular β-blockade: overexpression of Gαi2 depresses the β-adrenergic response in intact myocardium. Cardiovasc Res 55:300–308CrossRefPubMedGoogle Scholar
  15. Ju H, Gros R, You X, Tsang S, Husain M, Rabinovitch M (2001) Conditional and targeted overexpression of vascular chymase causes hypertension in transgenic mice. Proc Natl Acad Sci USA 98:7469–7474CrossRefPubMedGoogle Scholar
  16. Kellendonk C, Tronche F, Casanova E, Anlag K, Opherk C, Schutz G (1999) Inducible site-specific recombination in the brain. J Mol Biol 285:175–182CrossRefPubMedGoogle Scholar
  17. Kim SJ, Iizuka K, Kelly RA, Geng YJ, Bishop SP, Yang G, Kudej A, McConnell BK, Seidman CE, Seidman JG, Vatner SF (1999) An α-cardiac myosin heavy chain gene mutation impairs contraction and relaxation function of cardiac myocytes. Am J Physiol 276:H1780–H1787PubMedGoogle Scholar
  18. Korhonen J, Lahtinen I, Halmekyto M, Alhonen L, Janne J, Dumont D, Alitalo K (1995) Endothelial-specific gene expression directed by the tie gene promoter in vivo. Blood 86:1828–1835PubMedGoogle Scholar
  19. Le Y, Sauer B (2000) Conditional gene knockout using cre recombinase. Methods Mol Biol 136:477–485PubMedGoogle Scholar
  20. Li L, Miano JM, Mercer B, Olson EN (1996) Expression of the SM22α promoter in transgenic mice provides evidence for distinct transcriptional regulatory programs in vascular and visceral smooth muscle cells. J Cell Biol 132:849–859CrossRefPubMedGoogle Scholar
  21. Mittmann C, Chung CH, Höppner G, Michalek C, Nose M, Schuh A, Eschenhagen T, Weil J, Pieske B, Hirt S, Wieland T (2002) Expression of 10 RGS proteins in human myocardium: functional characterization of an upregulation of RGS4 in heart failure. Cardiovasc Res 55:778–786CrossRefPubMedGoogle Scholar
  22. Neyroud N, Nuss HB, Leppo MK, Marban E, Donahue JK (2002) Gene delivery to cardiac muscle. Methods Enzymol 346:323–334PubMedGoogle Scholar
  23. Pawloski-Dahm CM, Song G, Kirkpatrick DL, Palermo J, Gulick J, Dorn GW 2nd, Robbins J, Walsh RA (1998) Effects of total replacement of atrial myosin light chain-2 with the ventricular isoform in atrial myocytes of transgenic mice. Circulation 97:1508–1513PubMedGoogle Scholar
  24. Rajewsky K, Gu H, Kuhn R, Betz UA, Muller W, Roes J, Schwenk F (1996) Conditional gene targeting. J Clin Invest 98:600–603PubMedGoogle Scholar
  25. Regan CP, Manabe I, Owens GK (2000) Development of a smooth muscle-targeted cre recombinase mouse reveals novel insights regarding smooth muscle myosin heavy chain promoter regulation. Circ Res 87:363–369PubMedGoogle Scholar
  26. Sarao R, Dumont DJ (1998) Conditional transgene expression in endothelial cells. Transgenic Res 7:421–427CrossRefPubMedGoogle Scholar
  27. Schlaeger TM, Bartunkova S, Lawitts JA, Teichmann G, Risau W, Deutsch U, Sato TN (1997) Uniform vascular-endothelial-cell-specific gene expression in both embryonic and adult transgenic mice. Proc Natl Acad Sci USA 94:3058–3063CrossRefPubMedGoogle Scholar
  28. Soonpaa MH, Kim KK, Pajak L, Franklin M, Field LJ (1996) Cardiomyocyte DNA synthesis and binucleation during murine development. Am J Physiol 271:H2183–H2189PubMedGoogle Scholar
  29. Subramaniam A, Jones WK, Gulick J, Wert S, Neumann J, Robbins J (1991) Tissue-specific regulation of the α-myosin heavy chain gene promoter in transgenic mice. J Biol Chem 266:24613–24620PubMedGoogle Scholar
  30. Valencik ML, McDonald JA (2001) Codon optimization markedly improves doxycycline regulated gene expression in the mouse heart. Transgenic Res 10:269–275CrossRefPubMedGoogle Scholar
  31. Wettschureck N, Rutten H, Zywietz A, Gehring D, Wilkie TM, Chen J, Chien KR, Offermanns S (2001) Absence of pressure overload induced myocardial hypertrophy after conditional inactivation of Gαq/Gα11 in cardiomyocytes. Nat Med 7:1236–1240CrossRefPubMedGoogle Scholar
  32. Wiechert S, El-Armouche A, Rau T, Zimmermann WH, Eschenhagen T (2003) 24-h Langendorff-perfused neonatal rat heart to study the impact of adenoviral gene transfer. Am J Physiol 285: H907–914Google Scholar
  33. Yu Z, Redfern CS, Fishman GI (1996) Conditional transgene expression in the heart. Circ Res 79:691–697PubMedGoogle Scholar
  34. Zheng B, Ma YC, Ostrom RS, Lavoie C, Gill GN, Insel PA, Huang XY, Farquhar MG (2001) RGS-PX1, a GAP for Gαs and sorting nexin in vesicular trafficking. Science 294:1939–1942CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Peter Hein
    • 1
  • Martin C. Michel
    • 2
  • Kirsten Leineweber
    • 3
  • Thomas Wieland
    • 4
  • Nina Wettschureck
    • 5
  • Stefan Offermanns
    • 5
  1. 1.Institut für Pharmakologie und ToxikologieBayerische Julius-Maximilians-Universität WürzburgWürzburgGermany
  2. 2.Academic Medical Center, Dept. Pharmacology & PharmacotherapyUniversity of AmsterdamAmsterdamThe Netherlands
  3. 3.Institut für PathophysiologieUniversitätsklinikum EssenEssenGermany
  4. 4.Fakultät für Klinische Medizin Mannheim, Institut für Pharmakologie und ToxikologieUniversität HeidelbergMannheimGermany
  5. 5.Pharmakologisches InstitutUniversitä HeidelbergHeidelbergGermany

Personalised recommendations