Culturing and Differentiation of Embryonic and Adult Stem Cells for Heart Research and Transplantation Therapy

  • Marcel A.G. van der Heyden
  • Henk Rozemuller


Embryonic Stem Cell Leukaemia Inhibitory Factor Adult Stem Cell Embryoid Body Haematopoietic Stem Cell 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Assmus B, Schächinger V, Teupe C, Britten M, Lehman R, Döbert N, Grünwald F, Aicher A, Urbich C, Martin H, Hoelzer D, Dimmeler S, Zeiher AM (2002) Transplantation of progenitor cells and regeneration enhancement in acute myocardial infarction (TOPCARE-AMI). Circulation 106:3009–3017CrossRefPubMedGoogle Scholar
  2. Behfar A, Zingman LV, Hodgson DM, Rauzier JM, Kane GC, Terzie A, Pucéat M (2002) Stem cell differentiation requires a paracrine pathway in the heart. FASEB J 16:1558–1566CrossRefPubMedGoogle Scholar
  3. Bittner RE, Schofer C, Weipoltshammer K, Ivanova S, Streubel B, Hauser E, Freilinger M, Hoger H, Elbe-Burger A, Wachtler F (1999) Recruitment of bone-marrow-derived cells by skeletal and cardiac muscle in adult dystrophic mdx mice. Anat Embryol (Berl) 199:391–396Google Scholar
  4. Evans MJ, Kaufman MH (1981) Establishment in culture of pluripotential cells from mouse embryos. Nature 292: 154–156PubMedGoogle Scholar
  5. Goodell MA, Brose K, Paradis G, Conner AS, Mulligan RC (1996) Isolation and functional properties of murine hematopoietic stem cells that are replicating in vivo. J Exp Med 183:1797–1806CrossRefPubMedGoogle Scholar
  6. Goodell MA, Jackson KA, Majka WM, Mi T, Wang H, Pocius J, Hartley CJ, Majesky MW, Entman ML, Michael LH, Hirschi KK (2001) Stem cell plasticity in muscle and bone marrow. Ann N Y Acad Sci 938:208–18; discussion 218–220PubMedGoogle Scholar
  7. Grépin C, Robitaille L, Antakly T, Nemer M (1995) Inhibition of transcription factor GATA-4 expression blocks in vitro cardiac muscle differentiation. Mol Cell Biol 15:4095–4102PubMedGoogle Scholar
  8. Grépin C, Nemer G, Nemer M (1997) Enhanced cardiogenesis in embryonic stem cells overexpressing the GATA-4 transcription factor. Development 124:2387–2395PubMedGoogle Scholar
  9. Hescheler J, Fleischmann BK, Lentini S, Maltsev VA, Rohwedel J, Wobus AM, Addicks K (1997) Embryonic stem cells: a model to study structural and functional properties in cardiomyogenesis. Cardiovasc Res 36:149–162CrossRefPubMedGoogle Scholar
  10. Hirschi KK, Goodell MA (2002) Hematopoietic, vascular and cardiac fates of bone marrow-derived stem cells. Gene Ther 9:648–652CrossRefPubMedGoogle Scholar
  11. Jackson KA, Majka SM, Wulf GG, Goodell MA (2002) Stem cells: a minireview. J Cell Biochem Suppl 38:1–6Google Scholar
  12. Jamali M, Rogerson PJ, Wilton S, Skerjanc IS (2001) Nkx2-5 activity is essential for cardiomyogenesis. J Biol Chem 276:42252–42258CrossRefPubMedGoogle Scholar
  13. Jiang Y, Jahagirdar BN, Reinhardt RL et al. (2002a) Pluripotency of mesenchymal stem cells derived from adult marrow. Nature 418:41–49CrossRefPubMedGoogle Scholar
  14. Jiang Y, Vaessen B, Lenvik T, Blackstad M, Reyes M, Verfaillie CM (2002b) Multipotent progenitor cells can be isolated from postnatal murine bone marrow, muscle, and brain. Exp Hematol 30:896–904CrossRefPubMedGoogle Scholar
  15. Kehat I, Kenyagin-Karsenti D, Snir M, Segev H, Amit M, Gepstein A, Livne E, Binah Ol, Itskovitz-Eldor J, Gepstein L (2001) Human embryonic stem cells can differentiate into myocytes with structural and functional properties of cardiomyocytes. J Clin Invest 108:407–414CrossRefPubMedGoogle Scholar
  16. Klug MG, Soonpaa MH, Koh GY, Field LJ (1996) Genetically selected cardiomyocytes from differentiating embryonic stem cells form stable intracardiac grafts. J Clin Invest 98:216–224PubMedGoogle Scholar
  17. Kocher AA, Schuster MD, Szabolcs MJ, Takuma S, Burkhoff D, Wang J, Homma S, Edwards NM, Itescu S (2001) Neovascularization of ischemic myocardium by human bone-marrow-derived angioblasts prevents cardiomyocyte apoptosis, reduces remodeling and improves cardiac function. Nat Med 7:430–436CrossRefPubMedGoogle Scholar
  18. Krause DS (2002) Plasticity of marrow-derived stem cells. Gene Ther 9:754–758CrossRefPubMedGoogle Scholar
  19. Makino S, Fukuda K, Miyoshi S, Konishi F, Kodama H, Pan J, Sano M, Takahashi T, Hori S, Abe H, Hata J, Umezawa A, Ogawa S (1999) Cardiomyocytes can be generated from marrow stromal cells in vitro. J Clin Invest 103:697–705PubMedGoogle Scholar
  20. Meyer N, Jaconi M, Landopoulou A, Fort P, Pucéat M (2000) A fluorescent reporter gene as a marker for ventricular specification in ES-derived cardiac cells. FEBS Lett 478:151–158CrossRefPubMedGoogle Scholar
  21. Mummery CL, Ward-van Oostwaard D, Doevendans P, Spijker R, Van den Brink, Hassink R, Van der Heyden MAG, Opthof T, Pera M, Brutel de la Riviere A, Passier R, Tertoolen L (2003) Differentiation of human embryonic stem cells to cardiomyocytes, role of coculture with visceral endoderm-like cells. Circulation 107:2733–2740CrossRefPubMedGoogle Scholar
  22. Orlic D, Kajstura J, Chimenti S, Jakoniuk I, Anderson SM, Li B, Pickel J, McKay R, Nadal-Ginard B, Bodine DM, Leri A, Anversa P (2001a) Bone marrow cells regenerate infarcted myocardium. Nature 410:701–705CrossRefPubMedGoogle Scholar
  23. Orlic D, Kajstura J, Chimenti S, Limana F, Jakoniuk I, Quaini F, Nadal-Ginard B, Bodine DM, Leri A, Anversa P (2001b) Mobilized bone marrow cells repair the infarcted heart, improving function and survival. Proc Natl Acad Sci USA 98:10344–10349CrossRefPubMedGoogle Scholar
  24. Orlic D, Kajstura J, Chimenti S, Bodine DM, Leri A, Anversa P (2001c) Transplanted adult bone marrow cells repair myocardial infarcts in mice. Ann N Y Acad Sci. 938:221–229; discussion 229–230PubMedGoogle Scholar
  25. Skerjanc IS, Petropoulos H, Ridgeway AG, Wilton S (1998) Myocyte enhancer 2C and Nkx2-5 up-regulate each other’s expression and initiate cardiomyogenesis in P19 cells. J Biol Chem 52:34904–34910Google Scholar
  26. Stamm C, Westphal B, Kleine H, Petzsch M, Kittner C, Klinge H, Schümichen C, Nienaber CA, Freund M, Steinhoff G (2003) Autologous bone-marrow stem-cell transplantation for myocardial regeration. The Lancet 361: 45–46CrossRefGoogle Scholar
  27. Strauer BE, Brehm M, Zeus T, Köstering M, Hernandez A, Sorg R, Kögler G, Wernet P (2002) Repair of infarcted myocardium by autologous intracoronary mononuclear bone marrow cell transplantation in humans. Circulation 106:1913–1918CrossRefPubMedGoogle Scholar
  28. Takahashi T, Lord B, Schulze C, Fryer RM, Sarang SS, Gullans SR, Lee RT (2003) Ascorbic acid enhances differentiation of embryonic stem cells into cardiac myocytes. Circulation 107:r61–r65CrossRefGoogle Scholar
  29. Terada N, Hamazaki T, Oka M, Hoki M, Mastalerz DM, Nakano Y, Meyer EM, Morel L, Petersen BE, Scott EW (2002) Bone marrow cells adopt the phenotype of other cells by spontaneous cell fusion. Nature 416:542–545CrossRefPubMedGoogle Scholar
  30. Thomson JA, Itskovitz-Eldor J, Shapiro SS, Waknitz MA, Swiergiel JJ, Marshall VS, Jones JM (1998) Embryonic stem cell lines derived from human blastocysts. Science 282:1145–1147CrossRefPubMedGoogle Scholar
  31. Toma C, Pittenger MF, Cahill KS, Byrne BJ, Kessler PD (2002) Human mesenchymal stem cells differentiate to a cardiomyocyte phenotype in the adult murine heart. Circulation 105:93–98CrossRefPubMedGoogle Scholar
  32. Tomita S, Li RK, Weisel RD, Mickle DA, Kim EJ, Sakai T, Jia ZQ (1999) Autologous transplantation of bone marrow cells improves damaged heart function. Circulation 100(19 Suppl):II247–256PubMedGoogle Scholar
  33. Van der Heyden MAG, Defize LHK (2003) Twenty one years of P19 cells: what an embryonal carcinoma cell line taught us about cardiomyocyte differentiation. Cardiovasc Res 58:292–302PubMedGoogle Scholar
  34. Van der Heyden MAG, Van Kempen MJA, Tsuji Y, Rook MB, Jongsma HJ, Opthof T (2003) P19 embryonal carcinoma cells: a suitable model system for cardiac electrophysiological differentiation at the molecular and functional level. Cardiovasc Res 58:410–422PubMedGoogle Scholar
  35. Wagers AJ, Sherwood RI, Christensen JL, Weissman IL (2002) Little evidence for developmental plasticity of adult hematopoietic stem cells. Science 297:2256–2259CrossRefPubMedGoogle Scholar
  36. Wang X, Willenbring H, Akkari Y, Torimaru Y, Foster M, Al-Dhalimy M, Lagasse E, Finegold M, Olson S, Grompe M (2003) Cell fusion is the principal source of bone-marrow-derived hepatocytes. Nature 24:897–901Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Marcel A.G. van der Heyden
    • 1
  • Henk Rozemuller
    • 2
  1. 1.Department of Medical PhysiologyUniversity Medical CenterUtrechtThe Netherlands
  2. 2.Department of Medical PhysiologyJordan Laboratory, University Medical CenterUtrechtThe Netherlands

Personalised recommendations