Practical Use of in situ Hybridisation and RT in situ PCR in Cardiovascular Research

  • Yüksel Korkmaz
  • Dirk Steinritz
  • Wilhelm Bloch


Polymerase Chain Reaction Protease Digestion Histological Technique Nitro Blue Tetrazolium Chloride Label Nucleotide 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bagasra O, Seshamma T, Hansen J, Bobroski L, Saikumari P, Pestaner JP and Pomerantz RJ (1994) Application of in situ PCR methods in molecular biology: I. details of Methodology for general use. Cell Vision 1: 324–335Google Scholar
  2. Bagasra O, Bobroski LE, Amjad M (2001) Detection of nucleic acids in cells and tissues by in situ polymerase chain reaction. In: Lloyd RV (ed) Morphology methods. Cell and Molecular biology techniques. Humana Press, Totowa, pp 209–227Google Scholar
  3. Baumann MA, Korkmaz Y, Bloch W, Schmidt A, Addicks K, Schröder H (2003) Localization of the neuropeptide galanin in nerve fibers and epithelial keratinocytes of the rat molar gingiva. Eur J Oral Sci 111: 175–178CrossRefPubMedGoogle Scholar
  4. Baumgart E, Schad A, Grabenbauer M (2000) In situ hybridization: general principles and application of digoxigeninlabeled cRNA for the detection of mRNAs. In: Beesly JE (ed) Immuncytochemsitry and in situ hybridization in the biomedical sciences. Birkhäuser, Boston, pp 108–137Google Scholar
  5. Beaulieu P, Lambert C (1998) Peptidic regulation of heart rate and interactions with the autonomic nervous system. Cardiovasc Res 37: 578–585CrossRefPubMedGoogle Scholar
  6. Birtsch C, Wevers A, Traber J, Maelicke A, Bloch W and Schröder H (1997) Expression of a4-1 and a5 nicotinic cholinoceptor mRNA in the aging rat cerebral cortex. Neurobiol Aging 18: 335–342CrossRefPubMedGoogle Scholar
  7. Bloch W, Huggel K, Sasaki T, Grose R, Bugnon P, Addicks K, Timpl R, Werner S (2000) The angiogenesis inhibitor endostatin impairs blood vessel maturation during wound healing. FASEB J 14: 265–278Google Scholar
  8. Brunet JF, Berger F, Amalfitano G, Benabid AL (1994) Chemolabeling of frozen cerebral tissue proteins and immunopurified products with biotin and digoxigenin: physicochemical characteristics of biotinylated and digoxigeninated products. Anal Biochem 222: 76–0CrossRefPubMedGoogle Scholar
  9. Childs GV (1992) In situ Hybridization with nonradioactive probes. In: Darby IA (ed) Methods in Molecular Biology. Humana Press, Totowa, pp 131–141Google Scholar
  10. Deb A, Wang S, Skelding KA, Miller D, Simper D, Caplice NM (2003) Bone marrow-derived cardiomyocytes are present in adult human heart: A study of gender-mismatched bone marrow transplantation patients. Circulation 107: 1247–1249CrossRefPubMedGoogle Scholar
  11. Denninger JW, Marletta MA (1999) Guanylate cyclase and the NO/cGMP signaling pathway. Biochim Biophys Acta 1411: 334–350PubMedGoogle Scholar
  12. Doneda L, Bulfamante G, Grimoldi MG, Volpi L, Larizza L (1997) Localization of fos, jun, kit and SCF mRNA in human placenta throughout gestation using in situ RT-PCR. Early Pregnancy 3: 265–271PubMedGoogle Scholar
  13. Haase AT, Retzel EF, Staskus KA (1990) Amplification and detection of lentiviral DNA inside cells. Proc Natl Acad Sci USA 87: 4971–4975PubMedGoogle Scholar
  14. Jin L, Qian X, Lloyd RV (2001) In situ hybridisation: Detection of DNA and RNA. In: Lloyd RV (ed) Morphology Methods. Cell and molecular biology techniques. Humana Press, Totowa, pp 27–44Google Scholar
  15. Jowett T (1997) Principle of the technique. In: Jowett T (ed) Tissue in situ hybridisation. Methods in animal development John Wiley & Sons, Inc. and Spektrum Akademischer Verlag Co-Publication, New York and Heidelberg, pp 1–8Google Scholar
  16. Kontogeorgos G, Kapranos N, Thodou E (1992) Practical applications of the FISH technique. In: Lloyd RV (ed) Methods in Molecular Biology. Humana Press, Totowa, pp 131–141Google Scholar
  17. Lloyd RV, Jin L (1995) In situ hybridisation analysis of chromogranin A and B mRNAs in neuroendocrine tumors with digoxigenin-labeled oligonucleotide probe cocktails. Diagn Mol Pathol 4: 143–151PubMedGoogle Scholar
  18. Martinez A, Miller MJ, Quinn K, Unsworth EJ, Ebina M, Cuttitta F (1995) Non-radioactive localization of nucleic acids by direct in situ PCR and in situ RT-PCR in paraffin-embedded sections. J Histochem Cytochem 43: 739–747PubMedGoogle Scholar
  19. Martinez A, Man Y, Zullo SJ, Cuttitta F (2000) In situ amplification and detection of nucleic acids. In: Beesly JE (ed) Immuncytochemsitry and in situ hybridisation in the biomedical sciences. Birkhäuser, Boston, pp 156–174Google Scholar
  20. MyQuaid S, Allan, GM (1992) Detection protocols for biotinylated probes. Optimization using multistep techniques. J Histochem Cytochem 40: 569–574Google Scholar
  21. Nath J and Johnson KL (1997) Fluorescence in situ hybridization (FISH): DNA probe production and hybridization criteria. Biotechnic and Histochemistry 73: 6–22Google Scholar
  22. Nuovo GJ, Gallery F, MacConnell P, Braun A (1994) In situ detection of polymerase chain reaction-amplified HIV-1 nucleic acids and tumor necrosis factor-alpha RNA in the central nervous system. Am J Pathol 144: 659–666PubMedGoogle Scholar
  23. Nuovo GJ (1996) The foundations of successful RT in situ PCR, Front Biosci. 1: c4–c15PubMedGoogle Scholar
  24. Nuovo GJ (1997) Reverse transcriptase in situ PCR. In: Nuovo GJ (ed) PCR in situ hybridization. Protocols and applications. Lippincott-Raven, Philadelphia, pp 271–333Google Scholar
  25. O’Reilly KH, Boehm T, Shing Y, Fukai N, Vasios G, Lane WS, Flynn E, Birkhead JR, Olsen BR, Folkman J (1997) Endostatin: an endogenous inhibitor of angiogensis and tumor growth. Cell 88: 277–285PubMedGoogle Scholar
  26. Pinkel D, Straume T and Gray J (1986) Cytogenetic ananlysis using quantitative hichg sensitivity fluorescence hybridization. Proc Natl Acad Sci 83: 2934–2938PubMedGoogle Scholar
  27. See CG (2001) Fluorescence in situ hybridization. In: Beesley JE (ed) Immunocytochemistry and in situ hybridization in the biomedical sciences. Birkhäuser Boston, pp 138–156Google Scholar
  28. Trask BJ, Massa H, Kenwrick S and Gitschier J (1991) Mapping of human chromosome Xq28 by two-color fluorescence in situ hybridization of DNA sequences in interphase cell nuclei. Am J Hum Gen 48: 1–15Google Scholar
  29. Wetmur JG, Ruyechan WT, Douthart RJ (1981) Denaturation and renaturation of Penicillium chrysogenum mycophage double-stranded ribonucleic acid in tetraalkylammonium salt solutions. Biochemistry 20: 2999–3002CrossRefPubMedGoogle Scholar
  30. Wevers A, Jeske A, Lobron Ch, Birtsch Heinemann S, Maelicke A, Schröder R, Schröder H (1994) Cellular distribution of nicotinic acetylcholine receptor subunit mRNAs in the human cerebral cortex as revealed by non-isotopic in situ hybridization. Mol Brain Res 25: 122–128CrossRefPubMedGoogle Scholar
  31. Yang H, Wanner IB, Roper SD, and Chaudhari N (1999) An optimized method for in situ hybridization with signal amplification that allows the detection of rare mRNAs. J Histochem Cytochem 47: 431–445PubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Yüksel Korkmaz
    • 1
  • Dirk Steinritz
    • 1
  • Wilhelm Bloch
    • 2
  1. 1.Zentrum Anatomie, Institut I für AnatomieUniversität zu KölnKölnGermany
  2. 2.Institut für Kreislaufforschung und SportmedizinDeutsche Sporthochschule KölnKölnGermany

Personalised recommendations