Heart on a Chip — Extracellular Multielectrode Recordings from Cardiac Myocytes in Vitro

  • Ulrich Egert
  • Thomas Meyer


Peak Detection Spike Rate Cellulose Nitrate Microelectrode Array Beat Rate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Additional illustrations and the MEA-Tools for Matlab are available from Scholar
  2. Banach K, Halbach M, Hu P, Hescheler J, Egert U (2003) Development of electrical activity in cardiac myocyte aggregates derived from mouse embryonic stem cells. Am J Physiol Heart Circ Physiol 284: H2114–2123PubMedGoogle Scholar
  3. Egert U, Haemmerle H (2002) Application of the microelectrode-array (MEA) technology in pharmaceutical drug research. In: Baselt JP, Gerlach G (eds) Sensoren im Fokus neuer Anwendungen. w.e.b. Universitätsverlag, Dresden, pp 51–54Google Scholar
  4. Halbach MD, Egert U, Hescheler J, Banach K (2003) Estimation of action potential changes from field potential recordings in multicellular mouse cardiac myocyte cultures. Cell Physiol Biochem 13: 271–284CrossRefPubMedGoogle Scholar
  5. Hirota A, Kamino K, Komuro H, Sakai T (1987) Mapping of early development of electrical activity in the embryonic chick heart using multiple-site optical recording. J Physiol (London) 383: 711–728PubMedGoogle Scholar
  6. Igelmund P, Fleischmann BK, Fischer IV, Soest J, Gryshchenko O, Sauer H, Liu Q, Hescheler J (1999) Action potential propagation failures in long-term recordings from embryonic stem cell-derived cardiomyocytes in tissue-culture. Pflügers Arch Eur J Physiol 437: 669–679CrossRefGoogle Scholar
  7. Israel DA, Barry WH, Edell DJ, Mark RG (1984) An array of microelectrodes to stimulate and record from cardiac cells in culture. Am J Physiol 247: H669–H674PubMedGoogle Scholar
  8. Kehat I, Karsenti D, Amit M, Druckmann M, Feld Y, Itskovitz-Eldor J, Gepstein L (2001) Long term, high-resolution, electrophysiological assessment of human embryonic stem cell derived cardiomyocytes: a novel in vitro model for the human heart. Circ Res 18: 659–661Google Scholar
  9. Kleber AG, Fast VG, Kucera J, Rohr S (1996) Physiology and pathophysiology of cardiac impulse conduction. Z Kardiol 85: 25–33PubMedGoogle Scholar
  10. Kucera JP, Heuschkel MO, Renaud P, Rohr S (2000) Power-law behavior of beat-rate variability in monolayer cultures of neonatal rat ventricular myocytes. Circ Res 86: 1140–1145PubMedGoogle Scholar
  11. Lelong IH, Petegnief V, Rebel G (1992) Neuronal cells mature faster on polyethyleneimine coated plates than on polylysine coated plates. J Neurosci Res 32: 562–568CrossRefPubMedGoogle Scholar
  12. Meiry G, Reisner Y, Feld Y, Goldberg S, Rosen M, Ziv N, Binah O (2001) Evolution of action potential propagation and repolarization in cultured neonatal rat ventricular myocytes. J Cardiovasc Electrophysiol 12: 1269–1277CrossRefPubMedGoogle Scholar
  13. Potter SM, DeMarse TB (2001) A new approach to neural cell culture for long-term studies. J Neurosci Methods 110: 17–24CrossRefPubMedGoogle Scholar
  14. Press H, Teukolsky SA, Vetterling WT, Flannery BP (1992) Savitzky-Golay smoothing filters. In: Numerial recipes in C. Cambridge University Press, Cambridge, pp 650–655Google Scholar
  15. Redfern WS, Carlsson L, Davis AS, Lynch WG, MacKenzie I, Palethorpe S, Siegl PK, Strang I, Sullivan AT, Wallis R, Camm AJ, Hammond TG (2003) Relationships between preclinical cardiac electrophysiology, clinical QT interval prolongation and torsade de pointes for a broad range of drugs: evidence for a provisional safety margin in drug development. Cardiovasc Res 58: 32–45CrossRefPubMedGoogle Scholar
  16. Rohr S (1990) A computerized device for long-term measurements of the contraction frequency of cultured rat heart cells under stable incubating conditions. Pflügers Arch Eur J Physiol 416: 201–206CrossRefGoogle Scholar
  17. Rohr S, Kucera JP (1997) Involvement of the calcium inward current in cardiac impulse propagation: Induction of unidirectional conduction block by nifedipine and reversal by Bay K 8644. Biophys J 72: 754–766PubMedGoogle Scholar
  18. Rohr S, Kucera JP, Fast VG, Kleber AG (1997a) Paradoxical improvement of impulse conduction in cardiac tissue by partial cellular uncoupling. Science 275: 841–844CrossRefPubMedGoogle Scholar
  19. Rohr S, Kucera JP, Kleber AG (1997b) Form and function: Impulse propagation in designer cultures of cardiomyocytes. News in Physiological Sciences 12: 171–177Google Scholar
  20. Savitzky A, Golay MJE (1964) Smoothing and differentiation of data by simplified least squares procedures. Analytical Chemistry 36: 1627–1639CrossRefGoogle Scholar
  21. Spach MS (1983) The role of cell-to-cell coupling in cardiac conduction disturbances. Adv Exp Med Biol 161: 61–77PubMedGoogle Scholar
  22. Spach MS, Heidlage JF (1995) The stochastic nature of cardiac propagation at a microscopic level: Electrical description of myocardial architecture and its application to conduction. Circ Res 76: 366–380PubMedGoogle Scholar
  23. Spach MS, Miller WT, Miller-Jones E, Warren RB, Barr RC (1979) Extracellular potentials related to intracellular action potentials during impulse conduction in anisotropic canine cardiac muscle. Circ Res 45: 188–204PubMedGoogle Scholar
  24. Sprössler C, Denyer M, Britland S, Knoll W, Offenhäusser A (1999) Electrical recordings from rat cardiac muscle cells using field-effect transistors. Phys Rev E 60: 2171–2176CrossRefGoogle Scholar
  25. Thomas CA, Springer PA, Loeb GW, Berwald-Netter Y, Okun LM (1972) A miniature microelectrode array to monitor the bioelectric activity of cultured cells. Exp Cell Res 74: 61–66CrossRefPubMedGoogle Scholar
  26. Yamamoto M, Honjo H, Niwa R, Kodama I (1998) Low-frequency extracellular potentials recorded from the sinoatrial node. Cardiovasc Res 39: 360–372CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Ulrich Egert
    • 1
  • Thomas Meyer
    • 2
  1. 1.Neurobiologie und Biophysik, Institut für Biologie IIIUniversität FreiburgFreiburgGermany
  2. 2.Multi Channel SystemsMCS GmbHReutlingenGermany

Personalised recommendations