Skip to main content

Heart on a Chip — Extracellular Multielectrode Recordings from Cardiac Myocytes in Vitro

  • Chapter
Practical Methods in Cardiovascular Research

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Additional illustrations and the MEA-Tools for Matlab are available from http://www.brainworks.uni-freiburg.de/projects/mea/meatools/overview.htm

    Google Scholar 

  • Banach K, Halbach M, Hu P, Hescheler J, Egert U (2003) Development of electrical activity in cardiac myocyte aggregates derived from mouse embryonic stem cells. Am J Physiol Heart Circ Physiol 284: H2114–2123

    CAS  PubMed  Google Scholar 

  • Egert U, Haemmerle H (2002) Application of the microelectrode-array (MEA) technology in pharmaceutical drug research. In: Baselt JP, Gerlach G (eds) Sensoren im Fokus neuer Anwendungen. w.e.b. Universitätsverlag, Dresden, pp 51–54

    Google Scholar 

  • Halbach MD, Egert U, Hescheler J, Banach K (2003) Estimation of action potential changes from field potential recordings in multicellular mouse cardiac myocyte cultures. Cell Physiol Biochem 13: 271–284

    Article  CAS  PubMed  Google Scholar 

  • Hirota A, Kamino K, Komuro H, Sakai T (1987) Mapping of early development of electrical activity in the embryonic chick heart using multiple-site optical recording. J Physiol (London) 383: 711–728

    CAS  PubMed  Google Scholar 

  • Igelmund P, Fleischmann BK, Fischer IV, Soest J, Gryshchenko O, Sauer H, Liu Q, Hescheler J (1999) Action potential propagation failures in long-term recordings from embryonic stem cell-derived cardiomyocytes in tissue-culture. Pflügers Arch Eur J Physiol 437: 669–679

    Article  CAS  Google Scholar 

  • Israel DA, Barry WH, Edell DJ, Mark RG (1984) An array of microelectrodes to stimulate and record from cardiac cells in culture. Am J Physiol 247: H669–H674

    CAS  PubMed  Google Scholar 

  • Kehat I, Karsenti D, Amit M, Druckmann M, Feld Y, Itskovitz-Eldor J, Gepstein L (2001) Long term, high-resolution, electrophysiological assessment of human embryonic stem cell derived cardiomyocytes: a novel in vitro model for the human heart. Circ Res 18: 659–661

    Google Scholar 

  • Kleber AG, Fast VG, Kucera J, Rohr S (1996) Physiology and pathophysiology of cardiac impulse conduction. Z Kardiol 85: 25–33

    PubMed  Google Scholar 

  • Kucera JP, Heuschkel MO, Renaud P, Rohr S (2000) Power-law behavior of beat-rate variability in monolayer cultures of neonatal rat ventricular myocytes. Circ Res 86: 1140–1145

    CAS  PubMed  Google Scholar 

  • Lelong IH, Petegnief V, Rebel G (1992) Neuronal cells mature faster on polyethyleneimine coated plates than on polylysine coated plates. J Neurosci Res 32: 562–568

    Article  CAS  PubMed  Google Scholar 

  • Meiry G, Reisner Y, Feld Y, Goldberg S, Rosen M, Ziv N, Binah O (2001) Evolution of action potential propagation and repolarization in cultured neonatal rat ventricular myocytes. J Cardiovasc Electrophysiol 12: 1269–1277

    Article  CAS  PubMed  Google Scholar 

  • Potter SM, DeMarse TB (2001) A new approach to neural cell culture for long-term studies. J Neurosci Methods 110: 17–24

    Article  CAS  PubMed  Google Scholar 

  • Press H, Teukolsky SA, Vetterling WT, Flannery BP (1992) Savitzky-Golay smoothing filters. In: Numerial recipes in C. Cambridge University Press, Cambridge, pp 650–655

    Google Scholar 

  • Redfern WS, Carlsson L, Davis AS, Lynch WG, MacKenzie I, Palethorpe S, Siegl PK, Strang I, Sullivan AT, Wallis R, Camm AJ, Hammond TG (2003) Relationships between preclinical cardiac electrophysiology, clinical QT interval prolongation and torsade de pointes for a broad range of drugs: evidence for a provisional safety margin in drug development. Cardiovasc Res 58: 32–45

    Article  CAS  PubMed  Google Scholar 

  • Rohr S (1990) A computerized device for long-term measurements of the contraction frequency of cultured rat heart cells under stable incubating conditions. Pflügers Arch Eur J Physiol 416: 201–206

    Article  CAS  Google Scholar 

  • Rohr S, Kucera JP (1997) Involvement of the calcium inward current in cardiac impulse propagation: Induction of unidirectional conduction block by nifedipine and reversal by Bay K 8644. Biophys J 72: 754–766

    CAS  PubMed  Google Scholar 

  • Rohr S, Kucera JP, Fast VG, Kleber AG (1997a) Paradoxical improvement of impulse conduction in cardiac tissue by partial cellular uncoupling. Science 275: 841–844

    Article  CAS  PubMed  Google Scholar 

  • Rohr S, Kucera JP, Kleber AG (1997b) Form and function: Impulse propagation in designer cultures of cardiomyocytes. News in Physiological Sciences 12: 171–177

    Google Scholar 

  • Savitzky A, Golay MJE (1964) Smoothing and differentiation of data by simplified least squares procedures. Analytical Chemistry 36: 1627–1639

    Article  CAS  Google Scholar 

  • Spach MS (1983) The role of cell-to-cell coupling in cardiac conduction disturbances. Adv Exp Med Biol 161: 61–77

    CAS  PubMed  Google Scholar 

  • Spach MS, Heidlage JF (1995) The stochastic nature of cardiac propagation at a microscopic level: Electrical description of myocardial architecture and its application to conduction. Circ Res 76: 366–380

    CAS  PubMed  Google Scholar 

  • Spach MS, Miller WT, Miller-Jones E, Warren RB, Barr RC (1979) Extracellular potentials related to intracellular action potentials during impulse conduction in anisotropic canine cardiac muscle. Circ Res 45: 188–204

    CAS  PubMed  Google Scholar 

  • Sprössler C, Denyer M, Britland S, Knoll W, Offenhäusser A (1999) Electrical recordings from rat cardiac muscle cells using field-effect transistors. Phys Rev E 60: 2171–2176

    Article  Google Scholar 

  • Thomas CA, Springer PA, Loeb GW, Berwald-Netter Y, Okun LM (1972) A miniature microelectrode array to monitor the bioelectric activity of cultured cells. Exp Cell Res 74: 61–66

    Article  PubMed  Google Scholar 

  • Yamamoto M, Honjo H, Niwa R, Kodama I (1998) Low-frequency extracellular potentials recorded from the sinoatrial node. Cardiovasc Res 39: 360–372

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Egert, U., Meyer, T. (2005). Heart on a Chip — Extracellular Multielectrode Recordings from Cardiac Myocytes in Vitro. In: Dhein, S., Mohr, F.W., Delmar, M. (eds) Practical Methods in Cardiovascular Research. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-26574-0_22

Download citation

  • DOI: https://doi.org/10.1007/3-540-26574-0_22

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-40763-8

  • Online ISBN: 978-3-540-26574-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics