Recording Monophasic Action Potentials

  • Paulus Kirchhof
  • Larissa Fabritz
  • Michael R. Franz


Action Potential Duration Brugada Syndrome Ventricular Repolarization Effective Refractory Period Monophasic Action Potential 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Antzelevitch C, Shimizu W, Yan GX, Sicouri S, Weissenburger J, Nesterenko VV, Burashnikov A, Di Diego J, Saffitz J, Thomas GP (1999) The M cell: its contribution to the ECG and to normal and abnormal electrical function of the heart. J Cardiovasc Electrophysiol 10: 1124–1152PubMedGoogle Scholar
  2. Babuty D, Lab M (2000) Heterogeneous changes of monophasic action potential induced by sustained stretch in atrium. J Cardiovasc Electrophysiol 12: 323–329Google Scholar
  3. Behrens S, Li C, Fabritz CL, Kirchhof PF, Franz MR (1997) Shock-induced dispersion of ventricular repolarization: implications for the induction of ventricular fibrillation and the upper limit of vulnerability. J Cardiovasc Electrophysiol 8: 998–1008PubMedGoogle Scholar
  4. Behrens S, Li C, Kirchhof PF, Fabritz CL, Franz MR (1996) Reduced arrhythmogeneity of biphasic versus monophasic T wave shocks: Implications for defibrillation efficacy. Circulation 94: 1674–1680Google Scholar
  5. Bode F, Kilborn M, Karasik P, Franz MR (2001) The repolarization-excitability relationship in the human right atrium is unaffected by cycle length, recording site and prior arrhythmias. J Am Coll Cardiol 37: 920–925CrossRefPubMedGoogle Scholar
  6. Brorson L, Olsson SB (1976) Right atrial monophasic action potential in healthy males. Studies during spontaneous sinus rhythm and atrial pacing. Acta Med Scand 199: 433–446PubMedGoogle Scholar
  7. Burdon-Sanderson J, Page FJM (1882) On the time-relations of the excitatory process in the ventricle of the heart of the frog. J Physiol 2: 385–412Google Scholar
  8. Costard Jäckle A, Goetsch B, Antz M, Franz MR (1989b) Slow and long-lasting modulation of myocardial repolarization produced by ectopic activation in isolated rabbit hearts. Evidence for cardiac „memory“. Circulation 80: 1412–1420Google Scholar
  9. Costard Jäckle A, Liem LB, Franz MR (1989b) Frequency-dependent effect of quinidine, mexiletine, and their combination on postrepolarization refractoriness in vivo. J Cardiovasc Pharmacol 14: 810–817Google Scholar
  10. Daubert JP, Frazier DW, Wolf PD, Franz MR, Smith WM, Ideker RE (1991) Response of relatively refractory canine myocardium to monophasic and biphasic shocks. Circulation 84: 2522–2538PubMedGoogle Scholar
  11. de Groot SH, Vos MA, Gorgels AP, Leunissen JD, van der Steld BJ, Wellens HJ (1995) Combining monophasic action potential recordings with pacing to demonstrate delayed afterdepolarizations and triggered arrhythmias in the intact heart. Value of diastolic slope. Circulation 92: 2697–2704PubMedGoogle Scholar
  12. Eckardt L, Haverkamp W, Borggrefe M, Breithardt G (1998) Experimental models of torsade de pointes. Cardiovasc Res 39: 178–193CrossRefPubMedGoogle Scholar
  13. Eckardt L, Kirchhof P, Johna R, Breithardt G, Borggrefe M, Haverkamp W (1999) Transient local changes in right ventricular monophasic action potentials due to ajmaline in a patient with Brugada Syndrome. J Cardiovasc Electrophysiol 10: 1010–1015PubMedGoogle Scholar
  14. Eckardt L, Meißner A, Kirchhof P, Weber T, Borggrefe M, Breithardt G, van Aken H, Haverkamp W (2001) In vivo recording of monophasic action potentials in awake dogs — new applications for experimental electrophysiology. Bas Res Cardiol 96: 169–174Google Scholar
  15. Eckardt L, Meissner A, Kirchhof P, Weber T, Milberg P, Breithardt G, Haverkamp W (2003) In vivo recording of monophasic action potentials in awake dogs. Methods 30: 109–114CrossRefPubMedGoogle Scholar
  16. Fabritz CL, Kirchhof PF, Behrens S, Zabel M, Franz MR (1996) Myocardial vulnerability to T wave shocks: relation to shock strength, shock coupling interval, and dispersion of ventricular repolarization. J Cardiovasc Electrophysiol 7: 231–242PubMedGoogle Scholar
  17. Fabritz CL, Kirchhof PF, Coronel R, Opthof T, Franz MR, Janse M (1999) Monophasic action potential recordings during ventricular fibrillation compared to intracellular recordings. In: Franz MR (ed) Monophasic action potentials: Bridging cell and bedside. Futura Publishing, Armonk, NY, pp 733–745Google Scholar
  18. Fabritz L, Kirchhof P, Franz MR, Eckardt L, Mönnig G, Milberg P, Breithardt G, Haverkamp W (2003a) Prolonged action potential durations, increased dispersion of repolarization, and polymorphic ventricular tachycardia in a mouse model of proarrhythmia. Basic Res Cardiol 98: 25–32CrossRefPubMedGoogle Scholar
  19. Fabritz L, Kirchhof P, Franz MR, Nuyens D, Haverkamp W, Breithardt G, Carmeliet E, Carmeliet P (2002) Effect of esmolol and mexiletine on action potential duration, dispersion of repolarisation, and torsade de pointes in a transgenic mutant SCN5A (LQT3) mouse (abstract). Symposium Sodium and the HeartGoogle Scholar
  20. Fabritz L, Kirchhof P, Franz MR, Nuyens D, Rossenbacker T, Ottenhof A, Haverkamp W, Breithardt G, Carmeliet E, Carmeliet P (2003b) Effect of pacing and mexiletine on dispersion of repolarisation and arrhythmias in hearts of SCN5A d-KPQ (LQT3) mice. Cardiovasc Res 57: 1085–1093CrossRefPubMedGoogle Scholar
  21. Franz M, Schottler M, Schaefer J, Seed WA (1980) Simultaneous recording of monophasic action potentials and contractile force from the human heart. Klin Wochenschr 58: 1357–1359PubMedGoogle Scholar
  22. Franz MR (1983) Long-term recording of monophasic action potentials from human endocardium. Am J Cardiol 51: 1629–1634CrossRefPubMedGoogle Scholar
  23. Franz MR (1991) Method and theory of monophasic action potential recording. Prog Cardiovasc Dis 33: 347–368PubMedGoogle Scholar
  24. Franz MR (1999) Current status of monophasic action potential recording: theories, measurements and interpretations. Cardiovasc Res 41: 25–40CrossRefPubMedGoogle Scholar
  25. Franz MR, Bargheer K, Costard-Jackle A, Miller DC, Lichtlen PR (1991) Human ventricular repolarization and T wave genesis. Prog Cardiovasc Dis 33: 369–384PubMedGoogle Scholar
  26. Franz MR, Bargheer K, Rafflenbeul W, Haverich A, Lichtlen PR (1987) Monophasic action potential mapping in human subjects with normal electrocardiograms: direct evidence for the genesis of the T wave. Circulation 75: 379–386PubMedGoogle Scholar
  27. Franz MR, Burkhoff D, Spurgeon H, Weisfeldt ML, Lakatta EG (1986) In vitro validation of a new cardiac catheter technique for recording monophasic action potentials. Eur Heart J 7: 34–41PubMedGoogle Scholar
  28. Franz MR, Chin MC, Sharkey HR, Griffin JC, Scheinman MM (1990) A new single catheter technique for simultaneous measurement of action potential duration and refractory period in vivo. J Am Coll Cardiol 16: 878–886PubMedGoogle Scholar
  29. Franz MR, Cima R, Wang D, Profitt D, Kurz R (1992) Electrophysiological effects of myocardial stretch and mechanical determinants of stretch-activated arrhythmias. Circulation 86: 968–978PubMedGoogle Scholar
  30. Franz MR, Flaherty JT, Platia EV, Bulkley BH, Weisfeldt ML (1984) Localization of regional myocardial ischemia by recording of monophasic action potentials. Circulation 69: 593–604PubMedGoogle Scholar
  31. Franz MR, Karasik PL, Li C, Moubarak J, Chavez M (1997) Electrical remodeling of the human atrium: similar effects in patients with chronic atrial fibrillation and atrial flutter. J Am Coll Cardiol 30: 1785–1792CrossRefPubMedGoogle Scholar
  32. Franz MR, Kirchhof PF, Fabritz CL, Koller B, Zabel M (1995) Computer analysis of monophasic action potential recordings: manual validation and clinically pertinent applications. PACE 18: 1666–1678PubMedGoogle Scholar
  33. Franz MR, Schaefer J, Schottler M, Seed WA, Noble MI (1983) Electrical and mechanical restitution of the human heart at different rates of stimulation. Circ Res 53: 815–822PubMedGoogle Scholar
  34. Franz MR, Swerdlow CD, Liem LB, Schaefer J (1988) Cycle length dependence of human action potential duration in vivo. Effects of single extrastimuli, sudden sustained rate acceleration and deceleration, and different steady-state frequencies. J Clin Invest 82: 972–979PubMedGoogle Scholar
  35. Gehrmann J, Berul CI (2000) Cardiac electrophysiology in genetically engineered mice. J Cardiovasc Electrophysiol 11: 354–368PubMedGoogle Scholar
  36. Gepstein L, Evans S (1998) Electroanatomical mapping of the heart: basic concepts and implications for the treatment of cardiac arrhythmias. PACE 21: 1268–1278PubMedGoogle Scholar
  37. Gepstein L, Hayam G, BenHaim SA (1997) Activation-repolarization coupling in the normal swine endocardium. Circulation 96: 4036–4043PubMedGoogle Scholar
  38. Kirchhof P, Degen H, Franz M, Eckardt L, Fabritz L, Milberg P, Laer S, Neumann J, Breithardt G, Haverkamp W (2003a) Amiodarone-induced post-repolarization refractoriness suppresses induction of ventricular fibrillation. J Pharmacol Exp Ther 305: 257–263CrossRefPubMedGoogle Scholar
  39. Kirchhof P, Eckardt L, Franz MR, Mönnig G, Loh P, Wedekind H, Schulze-Bahr E, Breithardt G, Haverkamp W (2003b) Prolonged atrial action potential durations and polymorphic atrial tachyarrhythmias in patients with long QT syndrome. J Cardiovasc Electrophysiol 214: 1027–1033Google Scholar
  40. Kirchhof P, Eckardt L, Monnig G, Johna R, Loh P, Schulze-Bahr E, Breithardt G, Borggrefe M, Haverkamp W (2000) A patient with “atrial torsades de pointes”. J Cardiovasc Electrophysiol 11: 806–811PubMedGoogle Scholar
  41. Kirchhof P, Fabritz L, Fortmüller L, Lankford AR, Matherne G, Baba HA, Schmitz W, Breithardt G, Neumann J, Boknik P (2003c) Decreased chronotropic response to exercise and atrio-ventricular nodal conduction delay in mice overexpressing the A1-adenosine receptor. Am J Physiol 285: H145–153Google Scholar
  42. Kirchhof P, Loh P, Eckardt L, Ribbing M, Rolf S, Eick O, Wittkampf F, Borggrefe M, Breithardt GG, Haverkamp W (2002b) A novel nonfluoroscopic catheter visualization system (LocaLisa) to reduce radiation exposure during catheter ablation of supraventricular tachycardias. Am J Cardiol 90: 340–343CrossRefPubMedGoogle Scholar
  43. Kirchhof PF, Fabritz CL, Franz MR (1998a) Post-repolarization refractoriness versus conduction slowing caused by class I antiarrhythmic drugs — antiarrhythmic and proarrhythmic effects. Circulation 97: 2567–2574PubMedGoogle Scholar
  44. Kirchhof PF, Fabritz CL, Franz MR (1998b) Phase angle convergence of multiple monophasic action potential recordings precedes spontaneous termination of ventricular fibrillation. Basic Res Cardiol 93: 412–421CrossRefPubMedGoogle Scholar
  45. Kirchhof PF, Fabritz CL, Franz MR (1999) Postrepolarization refractoriness: Could it be the answer why antiarrhythmic drugs work? In: Franz MR, editor. Monophasic action potentials: Bridging cell and bedside. Futura, Armonk, NY, pp 493–509Google Scholar
  46. Kirchhof PF, Fabritz CL, Zabel M, Franz MR (1996) The vulnerable period for low and high energy T wave shocks: role of dispersion of repolarisation and effect of d-sotalol. Cardiovasc Res 31: 953–962CrossRefPubMedGoogle Scholar
  47. Kirchhof PF, Franz MR (2001) Repolarization mapping using monophasic action potentials. In: Oto A, Breithardt G, editors. Myocardial repolarization: from gene to bedside. Futura, Armonk, NY, pp 139–149Google Scholar
  48. Knollmann BC, Katchmann AN, Franz MR (2001) Monophasic action potential recordings from intact mouse heart: validation, regional heterogeneity, and relation to refractoriness. J Cardiovasc Electrophysiol 12: 1286–1294CrossRefPubMedGoogle Scholar
  49. Knollmann BC, Kirchhof P, Sirenko SG et al. (2003) Familial hypertrophic cardiomyopathy-linked mutant troponin T causes stress-induced ventricular tachycardia and Ca2+-dependent action potential remodeling. Circ Res 92: 428–436CrossRefPubMedGoogle Scholar
  50. Knollmann BC, Tranquillo J, Sirenko SG, Henriquez C, Franz MR (2002) Microelectrode study of the genesis of the monophasic action potential by contact electrode technique. J Cardiovasc Electrophysiol 13: 1246–1252CrossRefPubMedGoogle Scholar
  51. Koller BS, Karasik PE, Solomon AJ, Franz MR (1995a) Relation between repolarization and refractoriness during programmed electrical stimulation in the human right ventricle. Implications for ventricular tachycardia induction. Circulation 91: 2378–2384PubMedGoogle Scholar
  52. Koller BS, Karasik PE, Solomon AJ, Franz MR (1995b) Prolongation of conduction time during premature stimulation in the human atrium is primarily caused by local stimulus response latency. Eur Heart J 16: 1920–1924PubMedGoogle Scholar
  53. Meissner A, Eckardt L, Kirchhof P, Weber T, Rolf N, Breithardt G, Van Aken H, Haverkamp W (2001) Effects of thoracic epidural anesthesia with and without autonomic nervous system blockade on cardiac monophasic action potentials and effective refractoriness in awake dogs. Anesthesiology 95: 132–138; discussion 6APubMedGoogle Scholar
  54. Milberg P, Eckardt L, Bruns HJ, Biertz J, Ramtin S, Reinsch N, Fleischer D, Kirchhof P, Fabritz L, Breithardt G, Haverkamp W (2002) Divergent proarrhythmic potential of macrolide antibiotics despite similar QT prolongation: fast phase 3 repolarization prevents early afterdepolarizations and torsade de pointes. J Pharmacol Exp Ther 303: 218–225CrossRefPubMedGoogle Scholar
  55. Moubarak J, Karasik P, Fletcher R, Franz MR (2000) High dispersion of ventricular repolarization after an implantable defibrillator shocks predicts induction of ventricular fibrillation as well as unsuccessful defibrillation. J Am Coll Cardiol 35: 422–427CrossRefPubMedGoogle Scholar
  56. Olsson SB, Harper RW (1978) Mexiletine effect on monophasic action potential (MAP) of right ventricle in man. Acta Med Scand [Suppl]Google Scholar
  57. Pastore JM, Rosenbaum DS (2000) Role of structural barriers in the mechanism of alternans-induced reentry. Circ Res 87: 1157–1163PubMedGoogle Scholar
  58. Pinney SP, Koller BS, Franz MR, Woosley RL (1995) Terfenadine increases the QT interval in isolated guinea pig hearts. J Cardiovasc Pharmacol 25: 30–34PubMedGoogle Scholar
  59. Sager PT (1999) How to record high-quality monophasic action potential tracings. In: Franz MR (ed) Monophasic action potentials: Bridging cell and bedside. Futura, Armonk, NY, pp 121–134Google Scholar
  60. Schaper W, Winkler B (1998) Of mice and men — the future of cardiovascular research in the molecular era. Cardiovasc Res 39: 3–7CrossRefPubMedGoogle Scholar
  61. Shimizu W, Antzelevitch C (1997) Sodium channel block with mexiletine is effective in reducing dispersion of repolarization and preventing torsade des pointes in LQT2 and LQT3 models of the long-QT syndrome. Circulation 96: 2038–2047PubMedGoogle Scholar
  62. Sicouri S, Fish J, Antzelevitch C (1994) Distribution of M cells in the canine ventricle. J Cardiovasc Electrophysiol 5: 824–837PubMedGoogle Scholar
  63. Taggart P, Sutton PM, Boyett MR, Lab M, Swanton H (1996) Human ventricular action potential duration during short and long cycles. Rapid modulation by ischemia. Circulation 94: 2526–2534PubMedGoogle Scholar
  64. Tovar OH, Jones JL (1997) Epinephrine facilitates cardiac fibrillation by shortening action potential refractoriness. J Mol Cell Cardiol 29: 1447–1455CrossRefPubMedGoogle Scholar
  65. Tovar OH, Jones JL (2000) Electrophysiologic deterioration after one-minute fibrillation increases relative biphasic defibrillation efficacy. J Cardiovasc Electrophysiol 11: 645–651PubMedGoogle Scholar
  66. Verduyn SC, Vos MA, van der Zande J, van der Hulst FF, Wellens HJ (1997) Role of interventricular dispersion of repolarization in acquired torsade-de-pointes arrhythmias: reversal by magnesium. Cardiovasc Res 34: 453–463CrossRefPubMedGoogle Scholar
  67. Weissenburger J, Nesterenko VV, Antzelevitch C (2000) Transmural heterogeneity of ventricular repolarization under baseline and long QT conditions in the canine heart in vivo: torsades de pointes develops with halothane but not pentobarbital anesthesia. J Cardiovasc Electrophysiol 11: 290–304PubMedGoogle Scholar
  68. Wittkampf F, Wever E, Derksen R, Wilde A, Ramanna H, Hauer R, Robles de Medina E (1999) LocaLisa: new technique for real-time 3-dimensional localization of regular intracardiac electrodes. Circulation 99: 1312–1317PubMedGoogle Scholar
  69. Zabel M, Hohnloser SH, Behrens S, Woosley RL, Franz MR (1997) Differential effects of D-sotalol, quinidine, and amiodarone on dispersion of ventricular repolarization in the isolated rabbit heart. J Cardiovasc Electrophysiol 8: 1239–1245PubMedGoogle Scholar
  70. Zabel M, Lichtlen PR, Haverich A, Franz MR (1998) Comparison of ECG variables of dispersion of ventricular repolarization with direct myocardial repolarization measurements in the human heart. J Cardiovasc Electrophysiol 9: 1279–1284PubMedGoogle Scholar
  71. Zabel M, Portnoy S, Franz MR (1994) Prediction of dispersion of repolarization by electrocardiographic parameters — studies in an intact rabbit heart model. PACE 17: 789 (Abstract)Google Scholar
  72. Zhou X, Huang J, Ideker RE (2002) Transmural recording of monophasic action potentials. Am J Physiol Heart Circ Physiol 282: H855–861PubMedGoogle Scholar
  73. Schütz E (1931) Monophasische Actionsströme vom in situ durchbluteten Säugetierherzen. Klin Wochenschr. 10: 1454–1456CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Paulus Kirchhof
    • 1
  • Larissa Fabritz
    • 2
  • Michael R. Franz
    • 3
  1. 1.Medizinische Klinik und Poliklinik CUniversitätsklinikum MünsterMünsterGermany
  2. 2.Medizinische Klinik und Poliklinik C, Kardiologie und Angiologie und Institut für ArterioskleroseforschungUniversitätsklinikum MünsterMünsterGermany
  3. 3.Medical Centers Departments of Cardiology and PharmacologyGeorgetown University and Veterans AdministrationsWashington DCUSA

Personalised recommendations