Advertisement

Voltage-Clamp and Patch-Clamp Techniques

  • Hans Reiner Polder
  • Martin Weskamp
  • Klaus Linz
  • Rainer Meyer

Keywords

Patch Clamp Voltage Clamp Switching Frequency Patch Clamp Technique Electrophysiological Technique 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Armstrong CM, Chow RH (1987) Supercharging: A Method for Improving Patch-Clamp Performance. Biophys. J. 52:133–136PubMedGoogle Scholar
  2. Arreola J, Dirksen RT, Shieh RC, Williford DJ, Sheu SS (1991) Ca2+Current and Ca2+ Transients Under Action Potential Clamp in Guinea Pig Ventricular Myocytes. Am. J. Physiol. 261:C393–397PubMedGoogle Scholar
  3. Bean BP (1985) Two Kinds of Calcium Channels in Canine Cardiac Atrial Cells: Differences Kinetics, Selectivity, and Pharmacology. J. Gen. Physiol. 86:1–30CrossRefPubMedGoogle Scholar
  4. Bers DM (2002) Cardiac Excitation Contraction Coupling. Nature 415:198–205CrossRefPubMedGoogle Scholar
  5. Brennecke R, Lindemann, B (1974) Theory of a Membrane-Voltage Clamp with Discontinuous Feedback Through a Pulsed Current Clamp. Rev. Sci Instrum. 45:184–188Google Scholar
  6. Brown KT, Flaming DG (1977) New Microelectrode Techniques for Intracellular Work in Small Cells. Neuroscience 2:813–827CrossRefGoogle Scholar
  7. Cole KS (1949) Dynamic Electrical Characteristics of the Squid Axon Membrane. Arch. Sci. Physiol. 3:253–258Google Scholar
  8. Cole KS (1968) Membranes, Ions and Impulses. University of California Press, Berkley and Los AngelesGoogle Scholar
  9. Cooper PJ, Lei M, Cheng L-X, Kohl P (2000) Axial Stretch Increases Spontaneous Pacemaker Activity in Rabbit Isolated Sinoatrial Node Cells. J. Appl. Physiol. 89:2099–2104PubMedGoogle Scholar
  10. De Paoli P, Cerbai E, Koidl B, Kirchengast M, Sartiani L, Mugelli A (2002) Selectivity of Different Calcium Antagonists on T-and L-Type Calcium Currents in Guinea Pig Ventricular Myocytes. Pharmacol. Res. 46:491–497PubMedGoogle Scholar
  11. Deck KA, Kern R, Trautwein W (1964) Voltage Clamp Technique in Mammalian Cardiac Fibres. Pflügers Arch. 280: 63–80Google Scholar
  12. Dhein S (1998) Cardiac Gap Junction Channels, Physiology, Regulation, Patophysiology and Pharmacology, Karger, BaselGoogle Scholar
  13. Dipla K, Mattiello JA, Margulies KB, Jeevanandam V, Houser SR (1999) The Sarcoplasmic Reticulum and the Na+/Ca2+ Exchanger Both Contribute to the Ca2+ Transient of Failing Human Ventricular Myocytes. Circ. Res. 84:435–444PubMedGoogle Scholar
  14. Doerr T, Denger R, Trautwein W (1989) Calcium Currents in Single SA Nodal Cells of the Rabbit Heart Studied with Action Potential Clamp. Pflügers Arch. 413:599–603CrossRefPubMedGoogle Scholar
  15. Doerr T, Denger R, Doerr A, Trautwein W (1990) Ionic Currents Contributing to the Action Potential in Single Ventricular Myocytes of the Guinea Pig Studied with Action Potential Clamp. Pflügers Arch. 416:230–237CrossRefPubMedGoogle Scholar
  16. Dow JW, Harding NGL, Powell T (1981) Isolated Cardiac Myocytes. I. Preparation of Adult Myocytes and their Homology with the Intact Tissue. Cardiovasc. Res. 15:483–514PubMedGoogle Scholar
  17. Draper MH, Weidmann S (1951) Cardiac Resting and Action Potentials Recorded with an Intracellular Electrode. J. Physiol. 115:74–94PubMedGoogle Scholar
  18. Finkel AS, Gage PW (1985) Conventional Voltage Clamping with Two Intracellular Microelectrodes. In: Smith, TG, Lecar H, Redman SJ, Gage PW, (eds): Voltage and Patch Clamping with Microelectrodes, Chapter 4. The William and Wilkins Company, Baltimore, p 47Google Scholar
  19. Gallitelli MF, Schultz M, Isenberg G, Rudolf F (1999) Twitch-Potentiation Increases Calcium in Peripheral More than in Central Mitochondria of Guinea Pig Ventricular Myocytes. J. Physiol. 518: 433–447CrossRefPubMedGoogle Scholar
  20. Galvani, L: De viribus electricitatis in motu musculari. Commentarius. Proc. Academia Bologna, 7, 363–418, 1791Google Scholar
  21. Greeff K., Kühn F (2000) Variable Ratio of Permeability to Gating Charge of rBIIA Sodium Channels and Sodium Influx in Xenopus Oocytes, Biophys. J. 79: 2434–2453PubMedGoogle Scholar
  22. Grynkiewicz G, Ponie M, Tsien RY (1985) A New Generation of Ca2+ Indicators with Greatly Improved Fluorescence Properties. J. Biol. Chem. 260: 3440–3450PubMedGoogle Scholar
  23. Halliwell J, Whitaker M, Ogden D (1994) Using Microelectrodes. In: Ogden D (ed) Microelectrode Techniques. The Plymouth Workshop Handbook, Second Edition: The Company of Biologists Limited, Cambridge, p 1–16Google Scholar
  24. Hamill OP, Marty A, Neher E, Sakmann B, Sigworth FJ (1981) Improved Patch-Clamp Techniques for High-Resolution Current Recording from Cells and Cell-Free Membrane Patches. Pflügers Arch. 391: 85–100CrossRefPubMedGoogle Scholar
  25. Hodgkin AL, Huxley AF, Katz B (1952) Measurement of Current-Voltage Relations in the Membrane of the Giant Axon of Loligo. J. Physiol. 116: 424–448PubMedGoogle Scholar
  26. Hofmeier G, Lux HD (1981) The Time Course of Intracellular Free Calcium and Related Electrical Effects after Injection of CaCl2 into Neurons of the Snail Helix Pomatia. Pflügers Arch. 391: 242–251CrossRefPubMedGoogle Scholar
  27. Horn R, Marty A (1988) Muscarinic Activation of Ionic Currents by a New Whole-Cell Recording Method. J. Gen. Physiol. 92: 145–159CrossRefPubMedGoogle Scholar
  28. Juusola M (1994) Measuring Complex Admittance and Receptor Current by Single Electrode Voltage-Clamp. J. Neurosci. Meth. 53: 1–6Google Scholar
  29. Kordas M, Melik Z, Peterc D, Zorec R (1989) The Voltage-Clamp Apparatus Assisted by a “Current Pump”, J. Neurosci. Meth. 26: 229–232Google Scholar
  30. Lalley PM., AK Moschovakis, Windhorst U (1999) Electrical Activity of Individual Neurons in Situ: Extra-and Intracellular Recording, in: Windhorst U, Johansson H (eds) Modern Techniques in Neuroscience Research, Springer, Berlin, New YorkGoogle Scholar
  31. Ling G, Gerard RW (1949) The Normal Membrane Potential of Frog Sartorius Fibres. J. Comp. Physiol. 34: 127–156Google Scholar
  32. Linz KW, Meyer R (1998a) Control of L-Type Calcium Current During the Action Potential of Guinea Pig Ventricular Myocytes. J. Physiol. 513: 425–442CrossRefPubMedGoogle Scholar
  33. Linz KW, Meyer R (1997) Modulation of L-Type Calcium Current by Internal Potassium in Guinea Pig Ventricular Myocytes. Cardiovasc. Res. 33: 110–122CrossRefPubMedGoogle Scholar
  34. Linz KW, Meyer R (1998b) The Late Component of L-Type Calcium Current During Guinea Pig Action Potential and its Contribution to Contraction. Pflügers Arch. 436: 679–688CrossRefPubMedGoogle Scholar
  35. Linz KW, Westphalen C v, Streckert J, Hansen V, Meyer R (1999) Membrane Potential and Membrane Currents of Isolated Heart Muscle Cells Exposed to Pulsed High-Frequency Electromagnetic Fields. Bioelectromagnetics, 20: 497–511CrossRefPubMedGoogle Scholar
  36. Lipp P, Niggli E (1994) Sodium Current-Induced Calcium Signals in Isolated Guinea Pig Ventricular Myocytes. J. Physiol. 474: 439–446PubMedGoogle Scholar
  37. Luo CH, Rudy Y (1994) A Dynamic Model of the Cardiac Action Potential: Simulations of Ionic Currents and Concentration Changes. Circ. Res. 74: 1071–1096PubMedGoogle Scholar
  38. Magistretti, J., Mantegazza, M, Guatteo, E., Wanke, E (1996) Action Potentials Recorded with Patch-Clamp Amplifiers: Are they Genuine? Trends Neurosci. 19: 530–534PubMedGoogle Scholar
  39. McDonald TF, Pelzer S, Trautwein W., Pelzer DJ (1994) Regulation and Modulation of Calcium Channels in Cardiac, Skeletal and Smooth Muscle Cells. Physiol. Rev. 74: 365–507PubMedGoogle Scholar
  40. Meyer R, Linz KW, Surges R, Meinardus S, Vees J, Hoffmann A, Windholz O, Grohé C (1998) Rapid Modulation of L-Type Calcium Current by Acutely Applied Oestrogens in Isolated Cardiac Myocytes from Human, Guinea Pig, and Rat. Experimental Physiol. 83: 305–321Google Scholar
  41. Müller A, Lauven M, Berkels R, Dhein S, Polder HR, Klaus W (1999) Switched Single-Electrode Voltage-Clamp Amplifiers Allow Precise Measurement of Gap Junction Conductance. Am. J. Physiol 276: C980–C987PubMedGoogle Scholar
  42. Müller CM (1992) Intracellular Microelectrodes. In: Kettenmann H, Grantyn R (eds) Practical Elektrophysiological Methods. Wiley-Liss, New York, p 183–188Google Scholar
  43. Neher E (1995) Voltage Offsets in Patch-Clamp Experiments. In: Sakmann B, Neher, E (eds) Single-Channel Recording. Second Edition. Plenum Press, New York, London, p 17–20Google Scholar
  44. Ogden DC (1994) Microelectrode electronics. In: Ogden D.C. (ed.) Microelectrode techniques. The Plymouth Workshop Handbook, Second Edition: The Company of Biologists Limited, CambridgeGoogle Scholar
  45. Penner R (1995) A Practical Guide to Patch Clamping. Pipette Fabrication. In: Sakmann B, Neher, E (eds) Single-Channel Recording. Second Edition. Plenum Press, New York, London, p 17–20Google Scholar
  46. Polder HR, Swandulla D (2001) The Use of Control Theory for the Design of Voltage Clamp Systems: A Simple and Standardized Procedure for Evaluating System Parameters. J. Neurosci. Meth. 109: 97–109Google Scholar
  47. Rae J, Cooper K, Gates P, Watsky M (1991) Low Access Resistance Perforated Patch Recordings using Amphotericin B. J. Neurosci. Meth. 37: 15–26Google Scholar
  48. Reuter H (1967) The Dependence of the Slow Inward Current in Purkinje Fibres on the Extracellular Calcium-Concentration. J. Physiol. 192: 479–492PubMedGoogle Scholar
  49. Richter DW, Pierrefiche O, Lalley PM, Polder HR (1996) Voltage-Clamp Analysis of Neurons Within Deep Layers of the Brain. J. Neurosci. Meth. 67: 121–131Google Scholar
  50. Sakmann R, Neher E (1995) Geometric Parameters of Pipettes and Membrane Patches. In: Sakmann B, Neher, E (eds) Single-Channel Recording. Second Edition. Plenum Press, New York, London, p 17–20Google Scholar
  51. Schanne OF, Lavalle M, Laprade R, Gagn S (1968) Electrical Properties of Glass Microelectrodes. Proc. IEEE, 56: 1072–1082Google Scholar
  52. Schultz J-H, Volk T, Ehmke H (2001) Heterogeneity of Kv2.1 mRNA Expression and Delayed Rectifier Current in Single Isolated Myocytes from Rat Left Ventricle. Circ. Res. 88:483–490PubMedGoogle Scholar
  53. Sigworth FJ (1995) Electronic Design of the Patch Clamp. In: Sakmann B, Neher E (eds) Single-Channel Recording. Second Edition. Plenum Press, New York, London, p 95–126Google Scholar
  54. Smith TG, Lecar H, Redman SJ, Gage PW (ed) (1985) Voltage and Patch Clamping With Microelectrodes. The William and Wilkins Company, BaltimoreGoogle Scholar
  55. Tajima Y, Ono K, Akaike N (1996) Perforated Patch-Clamp Recording in Cardiac Myocytes using Cation-Selective Ionophore Gramicidin. Am. J. Physiol. 271: C524–532PubMedGoogle Scholar
  56. Tang JM, Wang J, Eisenberg RS (1992) Perfusing Patch Pipettes. Methods Enzymol. 207: 176–181PubMedGoogle Scholar
  57. Tang JM, Wang J, Quandt FN, Eisenberg RS (1990) Perfusing Pipettes. Pflügers Arch. 416: 347–350CrossRefPubMedGoogle Scholar
  58. Van Rijen HVM, Wilders R, Van Ginneken ACG, Jongsma HJ (1998) Quantitative Analysis of Dual Whole-Cell Voltage Clamp Determination of Gap Junctional Conductance. Pfluegers Arch. 436: 141–151Google Scholar
  59. Veenstra, RD, Brink PR (1992) Patch-Clamp Analysis of Gap Junctional Currents. In: Cell-Cell Interactions, edited by Stevenson BR, Gallin WJ & Paul DL. Oxford: Oxford University Press, p 167–201Google Scholar
  60. Weckström M, Kouvaleinen E., Juusola M (1992) Measurement of Cell Impedance in Frequency Domain using Discontinuous Current Clamp and White-Noise Modulated Current Injection. Pflügers Arch. 421: 469–472CrossRefPubMedGoogle Scholar
  61. Wendt-Gallitelli MF, Isenberg G (1989) X-ray Microanalysis of Single Cardiac Myocytes Frozen Under Voltage Clamp Conditions. Am. J. Physiol. 256: H574–583PubMedGoogle Scholar

Further reading

  1. Boulton AA, Baker G, Walz W (eds) (1995) Patch Clamp Applications and Protocols, Humana Press, Totowa, New JerseyGoogle Scholar
  2. Conn MP (ed.) (1998) Ion Channels (Part B), Meth. In Enzymology, Vol. 293, Academic Press, San DiegoGoogle Scholar
  3. Conn MP (ed.) (1998) Ion Channels (Part C), Meth. In Enzymology, Vol. 294, Academic Press, San DiegoGoogle Scholar
  4. Dhein S (1998) Cardiac Gap Junction Channels, Physiology, Regulation, Pathophysiology and Pharmacology, Karger, BaselGoogle Scholar
  5. Ferreira HG, Marshall MW (1985) The Biophysical Basis of Excitability, Cambridge University PressGoogle Scholar
  6. Hille B (1992) Ionic Channels of Excitable Membranes, Second Edition, Sinauer Associates Inc. Sunderland, Mass.Google Scholar
  7. Jack JJB, Noble D, Tsien RW (1975) Electric Current Flow in Excitable Cells. Claredon Press, OxfordGoogle Scholar
  8. Kettenmann H, Grantyn R (eds) (1992) Practical Elektrophysiological Methods. Wiley-Liss, New YorkGoogle Scholar
  9. Numberger M, Draguhn A (eds) (1996) Patch-Clamp Technik (in German), Spektrum Akademischer Verlag. HeidelbergGoogle Scholar
  10. Ogden DC (ed.) (1994) Microelectrode Techniques. The Plymouth Workshop Handbook, Second Edition: The Company of Biologists Limited, CambridgeGoogle Scholar
  11. Rudy B, LE Iverson (eds) (1992) Ion Channels, Meth. In Enzymology, Vol. 207, Academic Press, San DiegoGoogle Scholar
  12. Sakmann B, Neher E (eds) (1995) Single-Channel Recording. Second Edition. Plenum Press, New York, LondonGoogle Scholar
  13. Smith TG, Lecar H, Redman SJ, Gage PW. (eds) (1985) Voltage and Patch Clamping with Microelectrodes. Chapter 4. The William and Wilkins Company, BaltimoreGoogle Scholar
  14. Walz W, Boulton AA, Baker GB. (eds) (2002) Patch-Clamp Analysis. Humana Press, Totowa, New JerseyGoogle Scholar
  15. Weiss TF (1997) Cellular Biophysics, Vol. 1 Transport. The MIT Press, Cambridge, Mass.Google Scholar
  16. Weiss TF (1997) Cellular Biophysics, Vol. 2 Electrical Properties. The MIT Press, Cambridge, Mass.Google Scholar
  17. Windhorst U, Johansson H (eds) (1999) Modern Techniques in Neuroscience Research. Springer, Berlin, New YorkGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Hans Reiner Polder
    • 1
  • Martin Weskamp
    • 1
  • Klaus Linz
    • 2
  • Rainer Meyer
    • 3
  1. 1.npi electronic GmbHTammGermany
  2. 2.Grünenthal GmbHSafety PharmacologyAachenGermany
  3. 3.Institut für Physiologie IIRheinische-Friedrich-Wilhelms-Universität BonnBonnGermany

Personalised recommendations