Skip to main content

Isolated Vessels

  • Chapter

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bevan JA, Osher JV (1972) A direct method for recording tension changes in the wall of small blood vessels in vitro. Agents Actions 2: 257–260

    Article  CAS  PubMed  Google Scholar 

  • Boels PJ, Claes VA, Brutsaert DL (1990) Mechanics of K(+)-induced isotonic and isometric contractions in isolated canine coronary microarteries. Am. J Physiol 258: C512–C523

    CAS  PubMed  Google Scholar 

  • Boonen HC, DeMey JGR (1994) Distension influences responses to agonists and potassium in several types of small artery. In: Halpern W, Bevan J, Brayden JE, Dustan H, Nelson MT, Osol G (eds) The resistance arteries. Humana Press, Totowa, p 13–21

    Google Scholar 

  • Bukoski RD, Shearin S, Jackson WF, Pamarthi MF (2001) Inhibition of Ca2+-induced relaxation by oxidized tungsten wires and paratungstate. J Pharmacol Exp Ther. 299: 343–350

    CAS  Google Scholar 

  • Buus NH, VanBavel E, Mulvany MJ (1994) Differences in sensitivity of rat mesenteric small arteries to agonists when studied as ring preparations or as cannulated preparations. Br J Pharmacol 112: 579–587

    CAS  PubMed  Google Scholar 

  • Coats P, Hillier C (1999) Determination of an optimal axial-length tension for the study of isolated resistance arteries on a pressure myograph. Exp Physiol 84: 1085–1094

    Article  CAS  PubMed  Google Scholar 

  • Duling BR, Gore RW, Dacey jr RG, Damon DN (1981) Methods for isolation, cannulation, and in vitro study of single microvessels. Am J Physiol 241: H108–H116

    CAS  PubMed  Google Scholar 

  • Fischer JG, Mewes H, Hopp HH, Schubert R (1996) Analysis of pressurized resistance vessel diameter changes with a low cost digital image processing device. Comp Meth Prog Biomed 50: 23–30

    Article  CAS  Google Scholar 

  • Gonzalez MC, Arribas SM, Molero F, Fernandez-Alfonso MS (2001) Effect of removal of adventitia on vascular smooth muscle contraction and relaxation. Am J Physiol Heart Circ. Physiol 280: H2876–H2881

    CAS  PubMed  Google Scholar 

  • Halpern W (1991) Common in vitro investigative methods. In: Bevan J, Halpern W, Mulvany MJ (eds) The resistance vasculature. Humana Press, Totowa, pp 45–57

    Google Scholar 

  • Halpern W, Kelley M (1991) In vitro methodology for resistance arteries. Blood Vessels 28: 245–251

    CAS  PubMed  Google Scholar 

  • Halpern W, Osol G, Coy GS (1984) Mechanical behavior of pressurized in vitro prearteriolar vessels determined with a video system. Ann Biomed Eng 12: 463–479

    CAS  PubMed  Google Scholar 

  • Hoogerwerf N, van der Linden PJ, Westerhof N, Sipkema P (1992) A new mounting technique for perfusion of isolated small arteries: the effects of flow and oxygen on diameter. Microvascular Research 44: 49–60

    CAS  PubMed  Google Scholar 

  • Lew MJ, Angus JA (1992) Wall thickness to lumen diameter ratios of arteries from SHR and WKY: comparison of pressurised and wire-mounted preparations. J Vasc Res 29: 435–442

    CAS  PubMed  Google Scholar 

  • Machkov VV, Vlasova MA, Tarasova OS, Mikhaleva LM, Koshelev VB, Timin EN, Rodionov IM (1998) Responses to noradrenaline of tail arteries in hypertensive, hypotensive and normotensive rats under different regimens of perfusion: role of the myogenic response. Acta Physiol Scand 163: 331–337

    CAS  PubMed  Google Scholar 

  • Monos E, Contney SJ, Dornyei G, Cowley AW, Stekiel WJ (1993) Hyperpolarization of in situ rat saphenous vein in response to axial stretch. Am J Physiol 265: H857–H861

    CAS  PubMed  Google Scholar 

  • Monos E, Raffai G, Contney SJ, Stekiel WJ, Cowley AW Jr. (2001) Axial stretching of extremity artery induces reversible hyperpolarization of smooth muscle cell membrane in vivo. Acta Physiol Hung 88: 197–206

    CAS  PubMed  Google Scholar 

  • Mulvany MJ, Halpern W (1976) Mechanical properties of vascular smooth muscle cells in situ. Nature 260: 617–619

    Article  CAS  PubMed  Google Scholar 

  • Mulvany MJ, Halpern W (1977) Contractile properties of small arterial resistance vessels in spontaneously hypertensive and normotensive rats. Circ Res 41: 19–26

    CAS  PubMed  Google Scholar 

  • Mulvany MJ, Hansen OK, Aalkjaer C (1978) Direct evidence that the greater contractility of resistance vessels in spontaneously hypertensive rats is associated with a narrowed lumen, a thickened media, and an increased number of smooth muscle cell layers. Circ Res 43: 854–864

    CAS  PubMed  Google Scholar 

  • Nilsson H, Sjoblom N (1985) Distension-dependent changes in noradrenaline sensitivity in small arteries from the rat. Acta Physiol Scand 125: 429–435

    CAS  PubMed  Google Scholar 

  • Parkington HC, Tare M, Tonta MA, Coleman HA (1993) Stretch revealed three components in the hyperpolarization of guinea-pig coronary artery in response to acetylcholine. J Physiol 465: 459–476

    CAS  PubMed  Google Scholar 

  • Price JM, Davis DL, Knauss EB (1981) Length-dependent sensitivity in vascular smooth muscle. Am J Physiol 241: H557–H563

    CAS  PubMed  Google Scholar 

  • Schubert R, Wesselman JPM, Nilsson H, Mulvany MJ (1996) Noradrenaline-induced depolarization is smaller in isobaric compared to isometric preparations of rat mesenteric small arteries. Pflugers Arch Eur J Physiol 431: 794–796

    CAS  Google Scholar 

  • Stork AP, Cocks TM (1994) Pharmacological reactivity of human epicardial coronary arteries: characterization of relaxation responses to endothelium-derived relaxing factor. Br J Pharmacol 113: 1099–1104

    CAS  PubMed  Google Scholar 

  • VanBavel E, Mooij T, Giezeman MJ, Spaan JA (1990) Cannulation and continuous cross-sectional area measurement of small blood vessels. J Pharmacol Methods 24: 219–227

    Article  CAS  PubMed  Google Scholar 

  • VanBavel E, Mulvany MJ (1994) Role of wall tension in the vasoconstrictor response of cannulated rat mesenteric small arteries. J Physiol London 477: 103–115

    PubMed  Google Scholar 

  • Zaritsky JJ, Eckman DM, Wellman GC, Nelson MT, Schwarz TL (2000) Targeted disruption of Kir2.1 and Kir2.2 genes reveals the essential role of the inwardly rectifying K(+) current in K(+)-mediated vasodilation. Circ Res 87:160–166

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Schubert, R. (2005). Isolated Vessels. In: Dhein, S., Mohr, F.W., Delmar, M. (eds) Practical Methods in Cardiovascular Research. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-26574-0_12

Download citation

  • DOI: https://doi.org/10.1007/3-540-26574-0_12

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-40763-8

  • Online ISBN: 978-3-540-26574-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics